Tropical Animal Health and Production

, Volume 51, Issue 7, pp 2019–2024 | Cite as

Simulation modeling of influenza transmission through backyard pig trade networks in a wildlife/livestock interface area

  • Jessica Mateus-Anzola
  • Anuwat Wiratsudakul
  • Oscar Rico-Chávez
  • Rafael Ojeda-FloresEmail author
Regular Articles


Influenza constitutes a challenge to animal and human health. It is a highly contagious disease with wildlife reservoirs and considered as endemic among swine populations. Pigs are crucial in the disease dynamics due to their capacity to generate new reassortant viruses. The risk of informal animal trade in the spread of zoonotic diseases is well recognized worldwide. Nevertheless, the contribution of the backyard pig trade network in the transmission of influenza in a wildlife/livestock interface area is unknown. This study provides the first simulation of influenza transmission based on backyard farm connections in Mexico. A susceptible-infectious-recovered (SIR) model was implemented using the Epimodel software package in R, and 260 backyard farms were considered as nodes. Three different scenarios of connectivity (low, medium, and high) mediated by trade were generated and compared. Our results suggest that half of the pig population were infected within 5 days in the high connectivity scenario and the number of infected farms was approximately 65-fold higher compared to the low connected one. The consequence of connectivity variations directly influenced both time and duration of influenza virus transmission. Therefore, high connectivity driven by informal trade constitutes a significant risk to animal health. Trade patterns of animal movements are complex. This approach emphasizes the importance of pig movements and spatial dynamics among backyard production, live animal markets, and wildlife.


Animal movement Epidemiology Orthomyxoviridae Stochastic model Swine 



The authors are grateful to the National Institute of Statistics and Geography (INEGI) for the information obtained in the “Censo Agrícola, Ganadero y Forestal 2007” and the facilities for data processing in the Microdata Laboratory. We also acknowledge the help provided by the Academic Writing Team at Universidad Nacional Autónoma de México for the text edition.


The study received financial support from the PAPIIT project IA-205916.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The manuscript does not contain clinical studies or patient data.


  1. Büttner, K., Krieter, J., Traulsen, A. and Traulsen, I., 2013. Static network analysis of a pork supply chain in Northern Germany—Characterisation of the potential spread of infectious diseases via animal movements Preventive Veterinary Medicine, 110, 418–428CrossRefGoogle Scholar
  2. Cappelle, J., Gaidet, N., Iverson, S.A., Takekawa, J.Y., Newman, S.H., Fofana, B. and Gilbert, M., 2011. Characterizing the interface between wild ducks and poultry to evaluate the potential of transmission of avian pathogens International Journal of Health Geographics, 10, 60CrossRefGoogle Scholar
  3. Cisneros, L.F., Valdivia, A.G., Waldrup, K., Díaz-Aparicio, E., Martínez-de-Anda, A., Cruz-Vázquez, C.R. and Ortiz, R., 2012. Surveillance for Mycobacterium bovis transmission from domestic cattle to wild ruminants in a Mexican wildlife-livestock interface area American Journal of Veterinary Research, 73, 1617–1625CrossRefGoogle Scholar
  4. De la Rosa, M. del P., 2007. Aspectos socioculturales, económicos, sanitarios y bienestar animal que influyen en la conducta de las personas que comercializan équidos en el mercado de San Bernabé, Almoloya de Juárez, Estado de México (Universidad Nacional Autónoma de México: Ciudad de México)Google Scholar
  5. Dorjee, S., Poljak, Z., Revie, C.W., Bridgland, J., McNab, B., Leger, E. and Sanchez, J., 2013. A Review of Simulation Modelling Approaches Used for the Spread of Zoonotic Influenza Viruses in Animal and Human Populations: Approaches to Modelling Influenza Zoonoses and Public Health, 60, 383–411CrossRefGoogle Scholar
  6. Fasina, F.O., Mokoele, J.M., Spencer, B.T., Van Leengoed, L.A.M.L., Bevis, Y. and Booysen, I., 2015. Spatio-temporal patterns and movement analysis of pigs from smallholder farms and implications for African swine fever spread, Limpopo province, South Africa Onderstepoort J Vet Res, 82Google Scholar
  7. Févre, E.M., Bronsvoort, B.M. de C., Hamilton, K.A. and Cleaveland, S., 2006. Animal movements and the spread of infectious diseases Trends in Microbiology, 14, 125–131CrossRefGoogle Scholar
  8. Gutiérrez-Ruiz EJ, Aranda-Cirerol FJ, Rodríguez-Vivas RI, Bolio-González ME, Ramírez González S and Estrella-Tec J, 2012. Factores sociales de la crianza de animales de traspatio en Yucatán, México Bioagrociencias, 5, 20–28Google Scholar
  9. Kukielka, E.A., Martínez-López, B. and Beltrán-Alcrudo, D., 2017. Modeling the live-pig trade network in Georgia: Implications for disease prevention and control PLOS ONE, 12, e0178904CrossRefGoogle Scholar
  10. Lebl, K., Lentz, H.H.K., Pinior, B. and Selhorst, T., 2016. Impact of Network Activity on the Spread of Infectious Diseases through the German Pig Trade Network Frontiers in Veterinary Science, 3Google Scholar
  11. Leslie, E.E.C., Geong, M., Abdurrahman, M., Ward, M.P. and Toribio, J.-A.L.M.L., 2016. Live pig markets in eastern Indonesia: Trader characteristics, biosecurity and implications for disease spread Acta Tropica, 155, 95–103CrossRefGoogle Scholar
  12. Miguel, E., Grosbois, V., Caron, A., Boulinier, T., Fritz, H., Cornélis, D., Foggin, C., Makaya, P.V., Tshabalala, P.T. and de Garine-Wichatitsky, M., 2013. Contacts and foot and mouth disease transmission from wild to domestic bovines in Africa Ecosphere, 4, art51CrossRefGoogle Scholar
  13. Miller, R.S., Farnsworth, M.L. and Malmberg, J.L., 2013. Diseases at the livestock–wildlife interface: Status, challenges, and opportunities in the United States Preventive Veterinary Medicine, 110, 119–132CrossRefGoogle Scholar
  14. National Institute of Statistics and Geography (INEGI), 2007. Censo Agrícola, Ganadero y Forestal, (México)Google Scholar
  15. Pohlmann, A., Starick, E., Harder, T., Grund, C., Höper, D., Globig, A., Staubach, C., Dietze, K., Strebelow, G., Ulrich, R.G., Schinköthe, J., Teifke, J.P., Conraths, F.J., Mettenleiter, T.C. and Beer, M., 2017. Outbreaks among Wild Birds and Domestic Poultry Caused by Reassorted Influenza A(H5N8) Clade Viruses, Germany, 2016 Emerging Infectious Diseases, 23, 633–636CrossRefGoogle Scholar
  16. R Development Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, (Vienna, Austria)Google Scholar
  17. Reynolds, J.J.H., Torremorell, M. and Craft, M.E., 2014. Mathematical Modeling of Influenza A Virus Dynamics within Swine Farms and the Effects of Vaccination PLoS ONE, 9, e106177CrossRefGoogle Scholar
  18. Romagosa, A., Allerson, M., Gramer, M., Joo, H., Deen, J., Detmer, S. and Torremorell, M., 2011. Vaccination of influenza a virus decreases transmission rates in pigs Veterinary Research, 42, 120CrossRefGoogle Scholar
  19. Schulz, J., Boklund, A., Halasa, T.H.B., Toft, N. and Lentz, H.H.K., 2017. Network analysis of pig movements: Loyalty patterns and contact chains of different holding types in Denmark PLOS ONE, 12, e0179915CrossRefGoogle Scholar
  20. Short, K.R., Richard, M., Verhagen, J.H., van Riel, D., Schrauwen, E.J.A., van den Brand, J.M.A., Mänz, B., Bodewes, R. and Herfst, S., 2015. One health, multiple challenges: The inter-species transmission of influenza A virus One Health, 1, 1–13CrossRefGoogle Scholar
  21. Torremorell, M., Allerson, M., Corzo, C., Diaz, A. and Gramer, M., 2012. Transmission of Influenza A Virus in Pigs: Transmission of Influenza Virus in Pigs Transboundary and Emerging Diseases, 59, 68–84CrossRefGoogle Scholar
  22. Tufiño, C., 2013. Caracterización molecular de los virus de influenza A que circulan en cerdos en la región del Bajío Mexicano (Universidad Nacional Autónoma de México: Ciudad de México)Google Scholar
  23. Wiethoelter, A.K., Beltrán-Alcrudo, D., Kock, R. and Mor, S.M., 2015. Global trends in infectious diseases at the wildlife–livestock interface Proceedings of the National Academy of Sciences, 112, 9662–9667CrossRefGoogle Scholar
  24. Zepeda–Gómez, C., Lot–Helgueras, A., Nemiga, X.A. and Madrigal–Uribe, D., 2012. Floristics and diversity of the Lerma river wetlands in the State of Mexico 23–49Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jessica Mateus-Anzola
    • 1
  • Anuwat Wiratsudakul
    • 2
  • Oscar Rico-Chávez
    • 1
  • Rafael Ojeda-Flores
    • 1
    Email author
  1. 1.Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y ZootecniaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  2. 2.Department of Clinical Sciences and Public Health and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary ScienceMahidol UniversityNakhon PathomThailand

Personalised recommendations