Incidence and risk factors for ketosis in grazing dairy cattle in the Cundi-Boyacencian Andean plateau, Colombia

  • Adriana Garzón-Audor
  • Olimpo Oliver-EspinosaEmail author
Regular Articles


Ketosis is a metabolic disorder that has an important impact on health and productivity in dairy cattle during early lactation. In Colombia, the incidence and risk factors for ketosis development have not been studied. The objectives of the present study were to determine the incidence of subclinical (SCK) and clinical ketosis (CK) and to determine the risk factors associated with ketosis within the first 6 weeks of lactation in dairy cattle in Colombia. A prospective cohort study was carried out. A convenience sample of 150 lactating dairy cows from ten commercial dairy farms in the Cundi-Boyacencian Andean plateau were tested weekly using a point of care device to measure β-hydroxybutyrate during the first 6 weeks of lactation. Incidence of SCK and CK was calculated. Risk factors were evaluated using a survey for each animal and for each farm. Potential risk factors were evaluated using a X2 test, Relative Risk was calculated for significant variables by the X2 test (P ≤ 0.05) and these variables were included in the logistic regression model. Cumulative incidence of SCK was 25.33%, 3.33% for CK, and overall incidence of ketosis was 26%. In the logistic regression model, parity 3 or more, herd size > 150 animals, body condition score ≥ 3, retained placenta, and metritis were determined as risk factors for ketosis. The results of this study confirm previous reports in which a high body condition score, increased parity, herd size, retained placenta, and metritis are associated with an increased risk of ketosis in stabled and grazing cattle.


Ketosis Dairy cows Relative risk Risk factor Epidemiology Grazing cattle 


Funding information

Funding for this project was provided by a grant from the Universidad Nacional de Colombia, Facultad de Medicina Veterinaria y de Zootecnia (B.CFMVZ-355-17).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Bargo, F., Muller, L. D., Varga, G. A., Delahoy, J. E., & Cassidy, T. W. (2002). Ruminal Digestion and Fermentation of High-Producing Dairy Cows with Three Different Feeding Systems Combining Pasture and Total Mixed Rations. Journal of Dairy Science, 85(11), 2964–2973.CrossRefGoogle Scholar
  2. Baumgard, L. H., Collier, R. J., & Bauman, D. E. (2017). A 100-Year Review: Regulation of nutrient partitioning to support lactation. Journal of Dairy Science, 100(12), 10353–10366.CrossRefGoogle Scholar
  3. Berge, A., & Vertenten, G. (2014). A field study to determine the prevalence, dairy herd management systems, and fresh cow clinical conditions associated with ketosis in western European dairy herds. Journal of Dairy Science, 97(4), 2145–2154.CrossRefGoogle Scholar
  4. Coffey, M. P., Simm, G., Oldham, J. D., Hill, W. G., & Brotherstone, S. (2004). Genotype and Diet Effects on Energy Balance in the First Three Lactations of Dairy Cows. Journal of Dairy Science, 87(12), 4318–4326.CrossRefGoogle Scholar
  5. Compton, C., Young, L., & McDougall, S. (2015). Subclinical ketosis in post-partum dairy cows fed a predominantly pasture-based diet: defining cut-points for diagnosis using concentrations of beta-hydroxybutyrate in blood and determining prevalence. New Zealand Veterinary Journal, 63(5), 241–248.CrossRefGoogle Scholar
  6. Cucunubo, L. G., Wittwer, F., Noro, M., & Strieder-Barboza, C. (2013). Diagnostico de cetosis subclinica y balance energetico negativo en vacas lecheras mediante el uso de muestras de sangre, orina y leche. Revista Cientifica, XXIII(2), 111–119.Google Scholar
  7. Daros, R. R., Hötzel, M. J., Bran, J. A., LeBlanc, S. J., & von Keyserlingk, M. A. G. (2017). Prevalence and risk factors for transition period diseases in grazing dairy cows in Brazil. Preventive Veterinary Medicine, 145, 16–22.CrossRefGoogle Scholar
  8. Dieho, K., Bannink, A., Geurts, I. A. L., Schonewille, J. T., Gort, G., & Dijkstra, J. (2016). Morphological adaptation of rumen papillae during the dry period and early lactation as affected by rate of increase of concentrate allowance. Journal of Dairy Science, 99(3), 2339–2352.CrossRefGoogle Scholar
  9. Dohoo, I., Martin, W., & Stryhn, H. (2003). Veterinary epidemiologic research. Atlantic Veterinary College, University of Prince Edward Island.Google Scholar
  10. Douglas, G. N., Overton, T. R., Bateman, H. G., Dann, H. M., & Drackley, J. K. (2006). Prepartal Plane of Nutrition, Regardless of Dietary Energy Source, Affects Periparturient Metabolism and Dry Matter Intake in Holstein Cows. Journal of Dairy Science, 89(6), 2141–2157.CrossRefGoogle Scholar
  11. Drackley, J. K., Richard, M. J., Beitz, D. C., & Young, J. W. (1992). Metabolic Changes in Dairy Cows with Ketonemia in Response to Feed Restriction and Dietary 1,3-Butanediol. Journal of Dairy Science, 75(6), 1622–1634.CrossRefGoogle Scholar
  12. Duffield, T. (2000). Subclinical Ketosis in Lactating Dairy Cattle. Veterinary Clinics of North America: Food Animal Practice, 16(2), 231–253.Google Scholar
  13. Duffield, T., Sandals, D., Leslie, K. E., Lissemore, K., McBride, B. W., Lumsden, J. H., … Bagg, R. (1998). Efficacy of Monensin for the Prevention of Subclinical Ketosis in Lactating Dairy Cows. Journal of Dairy Science, 81(11), 2866–2873.Google Scholar
  14. Duffield, T., Lissemore, K. D., McBride, B. W., & Leslie, K. E. (2009). Impact of hyperketonemia in early lactation dairy cows on health and production. Journal of Dairy Science, 92(2), 571–580.CrossRefGoogle Scholar
  15. Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A Body Condition Scoring Chart for Holstein Dairy Cows. Journal of Dairy Science, 72(1), 68–78.CrossRefGoogle Scholar
  16. Erb, H. N., & Martin, S. W. (1978). Age, breed and seasonal patterns in the occurrence of ten dairy cow diseases: a case control study. Canadian Journal of Comparative Medicine : Revue Canadienne de Médecine Comparée, 42(1), 1–9.1Google Scholar
  17. Garro, C. J., Mian, L., & Cobos Roldán, M. (2014). Subclinical ketosis in dairy cows: prevalence and risk factors in grazing production system. Journal of Animal Physiology and Animal Nutrition, 98(5), 838–844.CrossRefGoogle Scholar
  18. Geishauser, T., Leslie, K., Tenhag, J., & Bashiri, A. (2000). Evaluation of eight cow-side ketone tests in milk for detection of subclinical ketosis in dairy cows. Journal of Dairy Science, 83(2), 296–299.CrossRefGoogle Scholar
  19. Goldhawk, C., Chapinal, N., Veira, D. M., Weary, D. M., & von Keyserlingk, M. A. G. (2009). Prepartum feeding behavior is an early indicator of subclinical ketosis. Journal of Dairy Science, 92(10), 4971–4977.CrossRefGoogle Scholar
  20. Gordon, J. L., LeBlanc, S. J., Duffield, T. F. et al. (2013). Ketosis Treatment in Lactating Dairy Cattle. Veterinary Clinics of North America: Food Animal Practice, 29(2), 433–445.Google Scholar
  21. Gröhn, Y., Erb, H., McCulloch, C., & Saloniemi, H. (1989). Epidemiology of Metabolic Disorders in Dairy Cattle: Association Among Host Characteristics, Disease, and Production. Journal of Dairy Science, 72(7), 1876–1885.CrossRefGoogle Scholar
  22. Gustafsson, A. H., Andersson, L., & Emanuelson, U. (1995). Influence of feeding management, concentrate intake and energy intake on the risk of hyperketonæmia in Swedish dairy herds. Preventive Veterinary Medicine, 22(4), 237–248.CrossRefGoogle Scholar
  23. Hayirli, A., Grummer, R. R., Nordheim, E. V., & Crump, P. M. (2002). Animal and Dietary Factors Affecting Feed Intake During the Prefresh Transition Period in Holsteins. Journal of Dairy Science, 85(12), 3430–3443.CrossRefGoogle Scholar
  24. Herdt, T. H. (2000). Ruminant Adaptation to Negative Energy Balance. Veterinary Clinics of North America: Food Animal Practice, 16(2), 215–230.Google Scholar
  25. Hosmer, D. W., & Lemeshow, S. (2005). Assessing the Fit of the Model. In Applied Logistic Regression (pp. 143–202). Hoboken: John Wiley & Sons, Inc.CrossRefGoogle Scholar
  26. Huzzey, J. M., Veira, D. M., Weary, D. M., & von Keyserlingk, M. A. G. (2007). Prepartum Behavior and Dry Matter Intake Identify Dairy Cows at Risk for Metritis. Journal of Dairy Science, 90(7), 3220–3233.CrossRefGoogle Scholar
  27. Iwersen, M., Falkenberg, U., Voigtsberger, R., Forderung, D., & Heuwieser, W. (2009). Evaluation of an electronic cowside test to detect subclinical ketosis in dairy cows. Journal of Dairy Science, 92(6), 2618–2624.CrossRefGoogle Scholar
  28. Janovick, N. A., Boisclair, Y. R., & Drackley, J. K. (2011). Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows. Journal of Dairy Science, 94(3), 1385–1400. CrossRefGoogle Scholar
  29. Kokkonen, T., Tesfa, A., Tuori, M., & Syrjälä-Qvist, L. (2004). Concentrate feeding strategy of dairy cows during transition period. Livestock Production Science, 86(1–3), 239–251.CrossRefGoogle Scholar
  30. McArt, J., Nydam, D., & Oetzel, G. (2012). Epidemiology of subclinical ketosis in early lactation dairy cattle. Journal of Dairy Science, 95(9), 5056–5066.CrossRefGoogle Scholar
  31. McArt, J., Nydam, D. V. V, & Oetzel, G. R. R. (2013). Dry period and parturient predictors of early lactation hyperketonemia in dairy cattle. Journal of Dairy Science, 96(1), 198–209.CrossRefGoogle Scholar
  32. Mellado, M., Dávila, A., Gaytán, L., Macías-Cruz, U., Avendaño-Reyes, L., & García, E. (2018). Risk factors for clinical ketosis and association with milk production and reproduction variables in dairy cows in a hot environment. Tropical Animal Health and Production, 50(7), 1611–1616.CrossRefGoogle Scholar
  33. Oetzel, G. (2004). Monitoring and testing dairy herds for metabolic disease. Veterinary Clinics of North America: Food Animal Practice, 20(3), 651–674.Google Scholar
  34. Roche, J. R., Meier, S., Heiser, A., Mitchell, M. D., Walker, C. G., Crookenden, M. A., … Kay, J. K. (2015). Effects of precalving body condition score and prepartum feeding level on production, reproduction, and health parameters in pasture-based transition dairy cows. Journal of Dairy Science, 98(10), 7164–7182.Google Scholar
  35. Saborío-Montero, A., Sánchez, J. M. et al. (2013). Prevalencia y factores de riesgo relacionados con la cetosis clínica y subclínica tipo I y II en un hato de vacas Jersey en Costa Rica. Agronomía Costarricense, 37(2), 17–29.Google Scholar
  36. Seifi, H. A., LeBlanc, S. J., Leslie, K. E., & Duffield, T. F. (2011). Metabolic predictors of post-partum disease and culling risk in dairy cattle. The Veterinary Journal, 188(2), 216–220.CrossRefGoogle Scholar
  37. Sprecher, D. J., Hostetler, D. E., & Kaneene, J. B. (1997). A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenology, 47(6), 1179–1187. Retrieved fromCrossRefGoogle Scholar
  38. Stengärde, L., Hultgren, J., Tråvén, M., Holtenius, K., & Emanuelson, U. (2012). Risk factors for displaced abomasum or ketosis in Swedish dairy herds. Preventive Veterinary Medicine, 103(4), 280–286.CrossRefGoogle Scholar
  39. Suthar, V., Canelas-Raposo, J., Deniz, A., & Heuwieser, W. (2013). Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. Journal of Dairy Science, 96(5), 2925–2938.CrossRefGoogle Scholar
  40. Tatone, E. H., Duffield, T. F., LeBlanc, S. J., DeVries, T. J., & Gordon, J. L. (2017). Investigating the within-herd prevalence and risk factors for ketosis in dairy cattle in Ontario as diagnosed by the test-day concentration of β-hydroxybutyrate in milk. Journal of Dairy Science, 100(2), 1308–1318.CrossRefGoogle Scholar
  41. Uribe, H. A., Kennedy, B. W., Martin, S. W., & Kelton, D. F. (1995). Genetic Parameters for Common Health Disorders of Holstein Cows. Journal of Dairy Science, 78(2), 421–430.CrossRefGoogle Scholar
  42. Van Hoeij, R. J., Dijkstra, J., Bruckmaier, R. M., Gross, J. J., Lam, T. J. G. M., Remmelink, G. J., … van Knegsel, A. T. M. (2017). The effect of dry period length and postpartum level of concentrate on milk production, energy balance, and plasma metabolites of dairy cows across the dry period and in early lactation. Journal of Dairy Science, 100(7), 5863–5879.Google Scholar
  43. Vanholder, T., Papen, J., Bemers, R., Vertenten, G., & Berge, A. (2015). Risk factors for subclinical and clinical ketosis and association with production parameters in dairy cows in the Netherlands. Journal of Dairy Science, 98(2), 880–888.CrossRefGoogle Scholar
  44. Villa-Arcila, N. A., Duque-Madrid, P. C., Sanchez-Arias, S., Rodriguez-Lecompte, J. C., Ratto, M. H., Sanchez, J., & Ceballos-Marquez, A. (2017). Butyrate concentration before and after calving is not associated with the odds of subclinical mastitis in grazing dairy cows. Livestock Science, 198, 195–200.CrossRefGoogle Scholar
  45. Weber, C., Losand, B., Tuchscherer, A., Rehbock, F., Blum, E., Yang, W., … Hammon, H. M. (2015). Effects of dry period length on milk production, body condition, metabolites, and hepatic glucose metabolism in dairy cows. Journal of Dairy Science, 98(3), 1772–1785.Google Scholar
  46. Youssef, M., & El-Ashker, M. (2017). Significance of insulin resistance and oxidative stress in dairy cattle with subclinical ketosis during the transition period. Tropical Animal Health and Production, 49(2), 239–244.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Salud Animal, Facultad de Medicina Veterinaria y de ZootecniaUniversidad Nacional de ColombiaBogotaColombia

Personalised recommendations