Effects of partial dietary substitution of groundnut meal by defatted, Aspergillus niger–fermented and heated Jatropha curcas kernel meal on feed intake and growth performance of broiler chicks

  • Thierry Daniel Tamsir NesseimEmail author
  • Moncef Benteboula
  • Abdoulaye Dieng
  • Guy Mergeai
  • Françoise Marechal
  • Jean-Luc Hornick
Regular Articles


This study was conducted to determine intake and growth performance of broiler chicks fed with Jatropha curcas kernel meal physico-chemically and biologically processed. The feed experiment lasted for 7 days with 20-day-old Ross 308 strain unsexed broiler chicks. Two dietary treatments were given each to ten animals, according to a complete randomized design. Kernels, manually obtained from J. curcas seed, were defatted, heated, and fermented with a strain of Aspergillus niger and oven-dried, in order to obtain the treated jatropha kernel meal. This latter was used to replace one third of a groundnut meal premix which was then incorporated in a commercial diet to warrant iso-nitrogenous and iso-caloric characteristics of the diets. Data collected were analyzed according to ANOVA procedure. The results revealed that the animals that received the diet incorporating jatropha kernel meal had numerically higher live weight (156.1 vs. 152.7 g/animal) (P > 0.05) and average daily weight gain (12.3 vs. 11.7 g/day/animal) (P > 0.05) than the control ones, at the end of experiment. The average daily feed intake was the same for the two groups of animals (23.2 g/day/animal) (P > 0.05) with a similar feed conversion ratio (2.0 vs. 2.1 respectively for the jatropha group and the control group). The survival rate, at the end of the experiment, was 100% for the two groups of animals. Physico-chemically and biologically processed Jatropha curcas kernel could be an interesting by-product for poultry feeding.


Broiler chicks Jatropha curcas Animal performance Detoxification 


Funding information

This study received financial support provided by the University Commission for Development (CUD) of Belgium for carrying out this study, through the inter-university program focused on improvement of agro ecological techniques of agricultural production systems integrating jatropha in the western part of the Senegalese groundnut basin.

Compliance with ethical standards

Statement of animal rights

In the absence of proper regulation on the use of animals for research and animal welfare during experiments in Senegal, the protocols were conducted according to the best practices usually accepted by the Ethical Committee of Liège University (Liège, Belgium) when conducting similar experiments.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abo El-Fadel M.H., Hussein A.M. and Mohamed A.H., 2011. Incorporation Jatropha curcas meal on lambs ration and it’s effect on lambs performance. Journal of American Science, 7(2), 129–132 Accessed 10 February 2016Google Scholar
  2. Abou-Arab A.A. and Abou-Salem M.F., 2010. Nutritional quality of Jatropha curcas seeds and effect of some physical and chemical treatments on their nutritional factors. African Journal of Food Science, 4(3), 93–103 Accessed 8 February 2016Google Scholar
  3. Aderibigbe A.O., Johnson C.O.L.E., Makkar H.P.S., Becker K. and Foidl N., 1997. Chemical composition and effect of heat on organic matter- and nitrogen-degradability and some antinutritional components of jatropha meal. Animal Feed Science and Technology, 67(2), 223-243 Accessed 15 January 2016CrossRefGoogle Scholar
  4. Annongu A.A., Joseph J.K., Apata D.F., Adeyina A.O., Yousuf M.B. and Ogunjimi K.B., 2010. Detoxification of Jatropha curcas seeds for use in nutrition of monogastric livestock as alternative feedstuff. Pakistan Journal of Nutrition, 9(9), 902–904 Accessed 03 February 2016CrossRefGoogle Scholar
  5. AOAC, 1990. Official Methods of Analysis (Volume 1). 15th Edn. Association of Official Analytic Chemists, Washington DC Accessed 14 January 2016Google Scholar
  6. Aregheore E.M., Makkar H.P.S. and Becker K., 1998. Assessment of lectin activity in a toxic and a non-toxic variety of Jatropha curcas using latex agglutination and haemagglutination methods and inactivation of lectin by heat treatments. Journal of the Science of Food and Agriculture, 77(3), 349–352 Accessed 16 January 2016CrossRefGoogle Scholar
  7. Aregheore E.M., Becker K. and Makkar H.P.S., 2003. Detoxification of a toxic variety of Jatropha curcas using heat and chemical treatments, and preliminary nutritional evaluation with rats. The South Pacific Journal of Natural Science, 21(1), 51-56 Accessed 16 January 2016CrossRefGoogle Scholar
  8. Becker K. and Makkar H.P.S, 1998. Effects of phorbol esters in carp (Cyprinus carpio L.). Veterinary & Human Toxicology, 40(2), 82–86 Accessed 4 February 2016Google Scholar
  9. Beerens P., 2007. Screw-pressing of jatropha seeds for fuelling purposes in less developed countries. Msc Dissertation, Department of Sustainable Energy Technology, Eindhoven University of Technology, Eindhoven. 80p. Accessed 16 January 2016
  10. Belewu M.A. and Akande B.A., 2010. Biological upgrading of the nutritional quality of Jatropha curcas kernel cake: effect on performance characteristics of goat. International Research Journal of Biotechnology, 1(2), 19-22 Accessed 3 February 2016Google Scholar
  11. Belewu M.A. and Sam R., 2010. Solid state fermentation of Jatropha curcas kernel cake: proximate composition and antinutritional components. Journal of Yeast and Fungal Research, 1(3), 44–46 Accessed 16 Jan 2016Google Scholar
  12. Belewu M.A., Belewu K.Y. and Popoola L.A., 2010a. Effect of cocktail of fungi blend on the digestibility coefficient and digestible nutrients of goat (Capra hircus). British Biotechnology Journal, 1(2), 46–52 Accessed 5 February 2016CrossRefGoogle Scholar
  13. Belewu M.A., Belewu K.Y. and Ogunsola F.O., 2010b. Nutritive value of dietary fungi treated Jatropha curcas kernel cake: voluntary, growth and digestibility coefficient of goat. Agriculture and Biology Journal of North America, 1(2), 135-138 Accessed 4 February 2016Google Scholar
  14. Belewu M.A., Eniolorunda O.O. and Llori G., 2010c. Response of goat to fungi (Rhizopus Oligosporus, Rhizopus nigrican) treated Jatropha curcas kernel cake. Archives of Applied Science Research, 2(4), 255-261 Accessed 5 February 2016Google Scholar
  15. Belewu M.A., Ahmed O. and Ibrahim S.O., 2011a. Solid state fermentation of Jatropha curcas with cocktail of fungi. International Journal of Biosciences, 1(1), 12-19 Accessed 8 Febuary 2016Google Scholar
  16. Belewu M.A., Belewu K.Y. and Lawal I.A., 2011b. Cocktail of fungi blend on Jatropha curcas kernel cake: effect on feed intake and blood parameters of goat. Lybian Agriculture Research Center Journal International, 2(3), 138-143 Accessed 5 February 2016Google Scholar
  17. Brand D., Pandey A., Roussos S. and Soccol C.R., 2000. Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme and Microbial Technology, 27(1–2), 127–133 Accessed 10 Febr 2016CrossRefGoogle Scholar
  18. Devappa R.K. and Swamylingappa, 2008. Biochemical and nutritional evaluation of jatropha protein isolate prepared by steam injection heating for reduction of toxic and antinutritional factors. Journal of the Science of Food and Agriculture, 88(5), 911–919 Accessed 12 Feb 2016CrossRefGoogle Scholar
  19. Dos Santos M.M., Da Rosa A.S., Dal’Boit S., Mitchell D.A. and Krieger N., 2004. Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes? Bioresource Technology, 93(3), 216–268 Accessed 8 Feb 2016Google Scholar
  20. Eckart K. and Henshaw P., 2012. Jatropha curcas L. and multifunctional platforms for the development of rural sub-Saharan Africa. Energy for Sustainable Development, 16(3), 303–311 Accessed 12 Feb 2016CrossRefGoogle Scholar
  21. Francis G., Makkar H.P.S. and Becker K., 2002. Products from little researched plants as aquaculture feed ingredients. AGRIPPA (FAO) peer-reviewed electronic journal. Accessed 8 Feb 2016
  22. Gubitz G.M., Mittlebach M. and Trabi M., 1999. Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresource Technology, 67(1), 73-82 Accessed 8 Feb 2016CrossRefGoogle Scholar
  23. Haas W. and Mittlebach M., 2000. Detoxification experiments with the seed oil from Jatropha curcas L. Industrial Crops and Products, 12(2), 111-118 Accessed 16 Jan 2016CrossRefGoogle Scholar
  24. Haas W., Sterk H. and Mittlebach M., 2002. Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. Journal of Natural Products, 65(10), 1434-1440 Accessed 15 Jan 2016CrossRefGoogle Scholar
  25. He W., King A.J., Khan M.A., Cuevas J.A., Ramiaramanana D. and Graham I.A., 2011. Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiology and Biochemistry, 49(10), 1183-1190 Accessed 8 Febr 2016CrossRefGoogle Scholar
  26. Heller J., 1996. Physic nut. Jatropha curcas L. promoting the conservation and use of underutilized and neglected crops. In: Institute of Plant Genetics and Crop Plant Research Notes, Gatersleben / International Plant Genetic Resources Institute, Rome Italy, 66p. Accessed 16 Jan 2016
  27. Jørgensen H., Zhao X.-Q., Knudsen K.E.B. and Egglum B.O., 1996. The influence of dietary fibre source and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. British Journal of Nutrition, 75(3), 379–395 Accessed 10 Feb 2016CrossRefGoogle Scholar
  28. Joshi C., Mathur P. and Khare S.K., 2011. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresource Technology, 102(7), 4815-4819 Accessed 4 Feb 2016CrossRefGoogle Scholar
  29. King A.J., He W., Cuevas J.A., Freudenberger M., Ramiaramanana D. and Graham A., 2009. Potential of Jatropha curcas as a source of renewable oil and animal feed. Journal of experimental Botany, 60(10), 2897–2905 Accessed 15 Jan 2016CrossRefGoogle Scholar
  30. Kouakou N.D.V., Thys E., Assidjo E.N. and Grongnet J.F., 2010. Ingestion et digestibilité in vivo du Panicum maximum associé à trois compléments: tourteau de Jatropha curcas, tourteau de coton (Gossipium hirsutum) et Euphorbia heterophylla chez le cobaye (Cavia porcellus L.). Tropicultura, 28(3), 173–177 Accessed 8 Feb 2016Google Scholar
  31. Kumar V., Makkar H.P.S. and Becker K., 2010. Nutritional, physiological and haematological responses in rainbow trout (Oncorhynchus myskiss) juveniles fed detoxified Jatropha curcas kernel meal. Aquaculture Nutrition, 17(4), 451-467.;jsessionid=C58D303F24BADE95D8BCC2E615CC62AC.f03t03?deniedAccessCustomisedMessage=&userIsAuthenticated=false. Accessed 8 Feb 2016CrossRefGoogle Scholar
  32. Lin J., Fang Y., Lin T. and Fang C., 2003. Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacologica Sinica, 24(3), 241–246 Accessed 8 February 2016Google Scholar
  33. Lu H., Liu Y., Zhou H., Yang Y., Chen M. and Liang B., 2009. Production of biodiesel from Jatropha curcas L. oil. Computers & Chemical Engineering, 33(5), 1091–1096 Accessed 16 Jan 2016CrossRefGoogle Scholar
  34. Makkar H.P.S. and Becker K., 2009. Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. European Journal of Lipid Science and Technology, 111(8), 773-787 Accessed 15 Jan 2016CrossRefGoogle Scholar
  35. Makkar H.P.S., Becker K., Sporer F. and Wink M., 1997. Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. Journal of Agricultural and Food Chemistry, 45(8), 3152–3157 Accessed 8 Feb 2016CrossRefGoogle Scholar
  36. Makkar H.P.S., Aderibigbe A.O. and Becker K., 1998. Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic effects. Food Chemistry, 62(2), 207–215 Accessed 15 Jan 2016CrossRefGoogle Scholar
  37. Makkar H.P.S., Martinez-Herrera J. and Becker K., 2008. Variations in seed number per fruit, seed physical parameters and contents of oil, protein and phorbol ester in toxic and non-toxic genotypes of Jatropha curcas. Journal of Plant Sciences, 3(4), 260-265 Accessed 16 Jan 2016CrossRefGoogle Scholar
  38. Martinez-Herrera J., Siddhuraju P., Francis G., Davila-Ortiz G. and Becker K., 2006. Chemical composition, toxic/antimetabolic constituents, and effects if different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chemistry, 96(1), 80–89 Accessed 16 Jan 2016CrossRefGoogle Scholar
  39. N.R.C, 1977. Nutrient requirements of domestic animals, Number 1, Nutrient requirements of poultry. Seventh revised edition, National Academy of Sciences. Washington, D.C., 61. Accessed 14 January 2016Google Scholar
  40. Nesseim T.D.T., Dieng A., Mergeai G. and Hornick J.-L., 2014. Toxicité et détoxification biologique du tourteau de Jatropha curcas L. pour une utilisation en alimentation animale : synthèse bibliographique. Revue Africaine de Santé et de Productions Animales, 12(3–4), 143–149Google Scholar
  41. Nesseim T.D.T., Dieng A., Mergeai G., Ndiaye S. and Hornick J.-L., 2015. Digestibility of solvent-treated Jatropha curcas kernel by broiler chickens in Senegal. Tropical Animal Health and Production, 47(8), 1553–1560CrossRefGoogle Scholar
  42. Ojediran T.K., Adisa Y.A., Yusuf S.A. and Emiola I.A., 2014. Nutritional evaluation of processed Jatropha curcas kernel meals: effects on growth performance of broiler chicks. Journal of Animal Science Advances, 1(11), 1110-1121 Accessed 8 February 2016CrossRefGoogle Scholar
  43. Oladunjoye I.O., Ojediran T., Aringbangba C., Akinrinlade O.S. and Opakunle O.G., 2014. Effects of inclusion level and length of fermentation on the utilization of jatropha (Jatropha curcas) seed cake by broiler chickens. International Journal of Current Microbiology and Applied Sciences, 3(7), 44-54,%20et%20al.pdf Accessed 3 February 2016Google Scholar
  44. Oseni O.A. and Akindahunsi A.A., 2011. Some phytochemical properties and effect of fermentation on the seed of Jatropha curcas L. American Journal of Food Technology, 6(2), 158-165 Accessed 8 February 2016CrossRefGoogle Scholar
  45. Oskoueian E., Abdullah N., Ahamad S., Saad W.Z., Omar A.R. and Ho Y.W., 2011. Bioactive compounds and biological activities of Jatropha curcas L. kernel meal extract. International Journal of Molecular Sciences, 12(9), 5955-5970 Accessed 8 February 2016CrossRefGoogle Scholar
  46. Palacios M.F., Easter R.A., Soltwede K.T., Parsons C.M., Douglas M.W., Hymowitz T. and Pettigrew J.E., 2004. Effect of soybean variety and processing on growth performance of young chicks and pigs. Journal of Animal Science, 82(4), 1108-1114 Accessed 13 April 2016CrossRefGoogle Scholar
  47. Pandey A., Selvakumar P., Soccol C.R. and Nigam P., 1999. Solid state fermentation for the production of industrial enzymes. Current Science, 77(1), 149–162 Accessed 9 February 2016Google Scholar
  48. Pradhan R.C., Mishra S., Naik S.N., Bhatnagar N. and Vijay V.K., 2011. Oil expression from jatropha seeds using a screw press expeller. Biosystems Engineering, 109(2), 158–166 Accessed 10 February 2016CrossRefGoogle Scholar
  49. Rakshit K.D., Darukeshwara K., Rathina Raj K., Narasimhamurthy K., Saibaba P. and Bhagya S., 2008. Toxicity studies of detoxified jatropha meal (Jatropha curcas) in rats. Food and Chemical Toxicology, 46(12), 3621-3625 Accessed 4 February 2016CrossRefGoogle Scholar
  50. Roach J.S., Devappa R.K., Makkar H.P.S. and Becker K., 2012. Isolation, stability and bioactivity of Jatropha curcas phorbol esters. Fitoterapia, 83(3), 586–592 Accessed 4 February 2016CrossRefGoogle Scholar
  51. Rosa T.D.S., Castro A.M., Torres A.G. and Freire D.M., 2010. Analysis of nutritional composition and detoxification of Jatropha curcas cake after solid-state fermentation. In the 32nd Symposium on Biotechnology for Fuels and Chemicals, Florida, 12-29. Accessed 10 February 2016
  52. Sibbald, I.R., 1976. The true metabolizable energy values of several feeding stuffs measured with roosters, laying hens, turkeys and broiler hens. Poultry Science, 55(4), 1459-1463 Accessed 14 January 2016CrossRefGoogle Scholar
  53. Sumiati Y.Y., Astuti D.A. and Suharti S., 2009. Feeding fermented Jatropha curcas L. meal supplemented with cellulose and phytase to kampong chicken. In: Proceeding, the 1st International Seminar on Animal Industry, Faculty of Animal Science, Bogor Agricultural University, Bogor, 23–24 Accessed 8 February 2016
  54. Sumiati S., Mutia R. and Damansyah A., 2012. Performance of layer hen fed fermented Jatropha curcas L. meal supplemented with cellulose and phytase enzyme. Journal of Indonesian Tropical Animal Agriculture, 37(2), 108-114 Accessed 8 February 2016CrossRefGoogle Scholar
  55. Tambunan A.H., Situmorang J.P., Silip P.P., Joelianingsih A. and Araki T., 2012. Yield and physicochemical properties and mechanically extracted Jatropha curcas L. oil. Biomass and Bioenergy, 43, 12-17 Accessed 10 February 2016CrossRefGoogle Scholar
  56. Üllenberg A., 2007. Jatropha à Madagascar -Rapport sur l’état actuel du secteur- Gesellschaft für Technische Zusammenarbeit (GTZ), Madagascar, 32p. Accessed 16 January 2016
  57. Veerabhadrappa M.B., Shivakumar S.B. and Devappa S., 2014. Solid-state fermentation of jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in jatropha seed cake using Aspergillus versicolor CJS-98. Journal of Bioscience and Bioengineering, 117(2), 208-214 Accessed 5 February 2016CrossRefGoogle Scholar
  58. Vyas D.K. and Singh R.N., 2007. Feasibility study of jatropha seed husk as an open core gasifier feedstock. Renewable Energy, 32(3), 512-517 Accessed 11 February 2016CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Thierry Daniel Tamsir Nesseim
    • 1
    Email author
  • Moncef Benteboula
    • 2
  • Abdoulaye Dieng
    • 1
  • Guy Mergeai
    • 3
  • Françoise Marechal
    • 4
  • Jean-Luc Hornick
    • 5
  1. 1.Ecole Nationale Supérieure d’Agriculture, Département des Productions AnimalesUniversité de ThièsThièsSenegal
  2. 2.Faculté des Sciences de la Nature et de la Vie, Département des Sciences AgronomiquesUniversité Chadli Bendjedid El TarfEl-TarfAlgeria
  3. 3.Gembloux Agro-Bio Tech, Département Phytotechnie Tropicale et HorticultureUniversité de LiègeGemblouxBelgium
  4. 4.Faculté de Médecine Vétérinaire, Département de Parasitologie et Pathologie des Maladies InfectieusesUniversité de LiègeLiègeBelgium
  5. 5.Faculté de Médecine Vétérinaire, Département de Productions AnimalesUniversité de LiègeLiègeBelgium

Personalised recommendations