Tropical Animal Health and Production

, Volume 51, Issue 4, pp 919–928 | Cite as

Contextualized re-calculation of enteric methane emission factors for small ruminants in sub-humid Western Africa is far lower than previous estimates

  • Séga NdaoEmail author
  • Charles-Henri Moulin
  • El Hadji Traoré
  • Mamadou Diop
  • François Bocquier
Regular Articles


Given the projected growth of methane emission by ruminants in developing countries, there is a clear need for reliable estimates of their contribution to greenhouse gas emissions. Existing studies have rarely considered sheep and goats. The objective of this study was to predict enteric fermentation methane emission factors (EFs) for Djallonké sheep and West African Dwarf goats, following the 2006 IPCC Tier 2 methodology. Estimated enteric methane emission factors, expressed per head of animal per year, were 2.3 kg CH4 and 2.0 kg CH4 for sheep and goats species, respectively. Compared with the generic Tier 1 emission factor of 5 kg CH4 head proposed by the IPCC for small ruminants in the sub-Saharan Africa region, our suggested values are 56% and 60% lower for sheep and goat, respectively. These lower values took account of the particular flock structure of both sheep and goats. These estimates also accounted for differences in live weight according to age and corresponding estimated feed intake. This work is a step forward in the revision of small ruminant emission factors and can further support assessment of mitigation strategies in Senegalese livestock farming systems.


Enteric methane Emission factor Grazing system Small ruminants Senegal 



Mr. Sega Ndao would like to acknowledge the National coordinator of PROGEBE Senegal for sharing datasets. We also appreciated expert assistance from the members of the Global Research Alliance, Livestock Research Group (GRA/LRG).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11250_2018_1775_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)


  1. Adebowale, E. A. 1988. Performance of young west African Dwart goats and sheep fed the aquatic macrophyte Echinochloa stagnina. Small Ruminant Research, 1(2), 167–173.CrossRefGoogle Scholar
  2. Adewumi, O. O., and Olorunnisomo, A. O. 2009. Milk yield and milk composition of West African dwarf, Yankasa and crossbred sheep in southwest of Nigeria. Livestock Research for Rural Development, 21(3), 1–8.Google Scholar
  3. Alves, T. P., Dall-Orsoletta, A. C., and Ribeiro-Filho, H. M. N. 2017. The effects of supplementing Acacia mearnsii tannin extract on dairy cow dry matter intake, milk production, and methane emission in a tropical pasture. Tropical animal health and production, 49(8), 1663–1668.CrossRefGoogle Scholar
  4. Archimède, H., Eugène, M., Magdeleine, C. M., Boval, M., Martin, C., Morgavi, D. P., and Doreau, M. 2011. Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology, 166, 59–64.CrossRefGoogle Scholar
  5. Assouma, M. H., Lecomte, P., Hiernaux, P., Ickowicz, A., Corniaux, C., Decruyenaere, V., ... and Vayssières, J. 2018. How to better account for livestock diversity and fodder seasonality in assessing the fodder intake of livestock grazing semi-arid sub-Saharan Africa rangelands. Livestock Science. 216: 16–23.CrossRefGoogle Scholar
  6. Barbosa, A. L., Voltolini, T. V., Menezes, D. R., de Moraes, S. A., Nascimento, J. C. S., and de Souza Rodrigues, R. T. 2018. Intake, digestibility, growth performance, and enteric methane emission of Brazilian semiarid non-descript breed goats fed diets with different forage to concentrate ratios. Tropical animal health and production, 50(2), 283–289.CrossRefGoogle Scholar
  7. Bhatta, R., Malik, P. K., Prasad, C. S., and Bhatta, R. 2015. Enteric methane emission: status, mitigation and future challenges: an Indian perspective. Livestock Production Climate Change, 229.Google Scholar
  8. Blaxter, K. L., and Clapperton, J. L. 1965. Prediction of the amount of methane produced by ruminants. British Journal of Nutrition, 19, 511–522.CrossRefGoogle Scholar
  9. Breiman, L. 2001. Random Forests. Machine Learning, 45(1), 5–32.CrossRefGoogle Scholar
  10. Cersosimo, L. M. and Wright, A. D. G. 2015. Estimation Methodologies for Enteric Methane Emission in Ruminants. In Climate Change Impact on Livestock: Adaptation and Mitigation (pp. 209–220). Springer, New Delhi.CrossRefGoogle Scholar
  11. Chirat, G., Groot, J. C., Messad, S., Bocquier, F., and Ickowicz, A. 2014. Instantaneous intake rate of free grazing cattle as affected by herbage characteristics in heterogeneous tropical agropastoral landscapes. Applied Animal Behaviour Science, 157, 48–60.CrossRefGoogle Scholar
  12. Cour, J. M. and Snrech, S. (Eds.). 1998. Preparing for the future: A vision of West Africa in the year 2020 (p. 153). Paris: OECD. Available at: Google Scholar
  13. Crutzen, P. J., Aselmann, I., and Seiler, W. 1986. Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus B: Chemical and Physical Meteorology, 38(3–4), 271–284.CrossRefGoogle Scholar
  14. Deighton, M., Williams, S., Hannah, M., Eckard, R., Boland, T., Wales, W., and Moate, P. 2014. A modified sulphur hexafluoride tracer technique enables accurate determination of enteric methane emissions from ruminants. Animal Feed Science and Technology, 197, 47–63.CrossRefGoogle Scholar
  15. Doreau, M., Benhissi, H., Thior, Y. E., Bois, B., Leydet, C., Genestoux, L. and Ickowicz, A. 2016. Methanogenic potential of forages consumed throughout the year by cattle in a Sahelian pastoral area. Animal Production Science, 56(3), 613–618.CrossRefGoogle Scholar
  16. Ejlertsen, M., Poole, J. and Marshall, K. 2012. Sustainable management of globally significant endemic ruminant livestock in West Africa: Estimate of livestock demographic parameters in Senegal. ILRI Research Report 29. Nairobi: International Livestock Research Institute. Available at:
  17. Eugene, M., Martin, C., Mialon, M. M., Krauss, D., Renand, G., and Doreau, M. 2011. Dietary linseed and starch supplementation decreases methane production of fattening bulls. Animal Feed Science and Technology, 166, 330–337.CrossRefGoogle Scholar
  18. Ezanno, P., Ickowicz, A., and Bocquier, F. 2003. Factors affecting the body condition score of Ndama cows under extensive range management in Southern Senegal. Animal Research, 52(1), 37–48.CrossRefGoogle Scholar
  19. Fall, A., Diop, M., Sandford, J., Wissocq, Y. J., Durkin, J. W., and Trail, J. C. 1982. Evaluation of the productivities of Djallonke sheep and Ndama cattle at the Centre de Recherches Zootechniques, Kolda, Senegal. Addis Ababa: International Livestock Centre for Africa (ILCA). Research Report N°3. Available at:
  20. FAO. 2016. The State of Food and Agriculture 2016: Climate change, agriculture and food security. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  21. Faugère, O. and Faugère, B. (1986). Flock monitoring and control of individual performances of small ruminants bred in an African traditional environment: Methodology features. Journal of Tropical Livestock Science, 39(1), 29–40.Google Scholar
  22. Faugère O., Dockes, A.C., Perrot C., Faugère B., 1990. L’élevage traditionnel des petits ruminants au Sénégal. I. Pratiques de conduites et d’exploitation des animaux chez les éleveurs de la région de Kolda. Journal of Tropical Livestock Science, 43, 249–259.Google Scholar
  23. Fernández-Rivera, S., Okike, I., Manyong, V., Williams, T. O., Kruska, R. L., and Tarawali, S. A. 2004. Classification and description of the major farming systems incorporating ruminant livestock in West Africa. In Sustainable crop–livestock production for improved livelihoods and natural resources management in West Africa. Proceedings of an international conference held at IITA, Ibadan, Nigeria.Google Scholar
  24. Garg, M. R. and Sherasia, P. L. 2015. Ration balancing: A practical approach for reducing methanogenesis in tropical feeding systems. In Climate Change Impact on Livestock: Adaptation and Mitigation (pp. 285–301). Springer, New Delhi.CrossRefGoogle Scholar
  25. Gbangboche, A. B., Adamou-Ndiaye, M., Youssao, A. K. I., Farnir, F., Detilleux, J., Abiola, F. A., and Leroy, P. L. 2006. Non-genetic factors affecting the reproduction performance, lamb growth and productivity indices of Djallonke sheep. Small Ruminant Research, 64(1–2), 133–142.CrossRefGoogle Scholar
  26. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., ... and Tempio, G. 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO).Google Scholar
  27. Hammami, P., Lancelot, R., and Lesnoff, M. 2016. Modelling the dynamics of post-vaccination immunity rate in a population of Sahelian sheep after a vaccination campaign against peste des petits ruminants virus. PloS one, 11(9), e0161769.CrossRefGoogle Scholar
  28. Hammond, K., Crompton, L., Bannink, A., Dijkstra, J., Yánez-Ruiz, D., O’Kiely, P., … Reynolds, C. 2016. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Animal Feed Science and Technology, 219, 13–30.CrossRefGoogle Scholar
  29. Herrero, M., Thornton, P. K., Kruska, R., and Reid, R. S. 2008. Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture, Ecosystems and Environment, 126(1–2), 122–137.CrossRefGoogle Scholar
  30. Holechek, J. L., Cibils, A. F., Bengaly, K., and Kinyamario, J. I. 2017. Human population growth, African pastoralism, and rangelands: A perspective. Rangeland ecology and management, 70(3), 273–280.CrossRefGoogle Scholar
  31. Hristov, A. N., Kebreab, E., Niu, M., Oh, J., Bannink, A., Bayat, A. R., ... and Dijkstra, J. 2018. Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of dairy science, 101(7), 6655–6674.CrossRefGoogle Scholar
  32. Ickowicz, A and Mbaye, M. 2001. Forêts soudaniennes et alimentation des bovins au Sénégal : potentiel et limites. Bois et forêts des tropiques, 270, 47–61.Google Scholar
  33. IPCC, 2006. 2006 IPCC guidelines for National greenhouse gas inventories. Prepared by the national greenhouse gas inventories programme. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), Agriculture, Forestry and Other Land Use, vol. 4. Institute for Global Environmental Strategies. International Panel on Climate Change, Hayama, Japan.Google Scholar
  34. ISRA. 2005. Bilan de la recherche agricole et agroalimentaire au Sénégal. Institut Sénégalais de Recherches Agricoles. Dakar: ISRA-ITA-CIRAD. Available at :
  35. Jaitner, J., Sowe, J., Secka-Njie, E., and Dempfle, L. 2001. Ownership pattern and management practices of small ruminants in The Gambia—implications for a breeding programme. Small Ruminant Research, 40 (2), 101–108.CrossRefGoogle Scholar
  36. Johnson, K. A., and Johnson, D. E. 1995. Methane emissions from cattle. Journal of Animal Science, 8(73), 2483–2492.CrossRefGoogle Scholar
  37. Kebreab, E., Clark, K., Wagner-Riddle, C., and France, J. 2006. Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Canadian Journal of Animal Science, 2 (86), 135–137.CrossRefGoogle Scholar
  38. Kosgey, I. S. 2004. Breeding objectives and breeding strategies for small ruminants in the tropics. Available at:
  39. Kosgey, I. S., Baker, R. L., Udo, H. M. J., and Van Arendonk, J. A. M. 2006. Successes and failures of small ruminant breeding programmes in the tropics: a review. Small Ruminant Research, 61(1), 13–28.CrossRefGoogle Scholar
  40. Lancelot, R., Lesnoff, M., and McDermott, J. J. 2002. Use of Akaike information criteria for model selection and inference: an application to assess prevention of gastrointestinal parasitism and respiratory mortality of Guinean goats in Kolda, Senegal, Preventive veterinary medicine, 55(4), 217–240.CrossRefGoogle Scholar
  41. Lenka, S., Lenka, N. K., Sejian, V., and Mohanty, M. 2015. Contribution of Agriculture Sector to Climate Change. In Climate Change Impact on Livestock: Adaptation and Mitigation (pp. 37–48). Springer, New Delhi.CrossRefGoogle Scholar
  42. Ly, C., Fall, A., and Okike, I. 2010. The Livestock Sector in Need of Regional Strategies. Livestock in a changing landscape. Experiences and regional perspectives, 27. Available at: insert here page=43
  43. Malick, P. K., Bhatta, R., Takahashi, J., Kohn, R. A., and Prasad, C. S. 2015. Livestock production and climate change (Series 6. ISBN-13: 978 1 78064 432 5 ed.). Boston: CAB International.CrossRefGoogle Scholar
  44. McGinn, S., Beauchemin, K., Iwaasa, A., and McAllister, T. 2006. Assessment of th sulfur hexafluoride (SF6) tracer technique for measuring enteric methane emissions from catttle. Journal of Environmental Quality, 35, 1686–1691.CrossRefGoogle Scholar
  45. MEPA, 2016. Rapport d’activités du Ministère de l’Elevage et des Productions Animales. Available at: file:///Users/ndaosega/Desktop/STATISTIQUES/STAT_Agricoles/Ministere_elevage/Rapport_MEPA_2016.pdf.Google Scholar
  46. Missohou A., Diouf L., Sow R.S., Wollny C.B.A., 2004. Goat milk production and processing in the Niayes in Senegal. South African Journal of Animal Science, 34 (suppl. 1): 151–154Google Scholar
  47. Mourad, M., Gbanamou, G., and Balde, I. B. 2001. Carcass characteristics of West African dwarf goats under extensive system. Small Ruminant Research, 42(1), 81–85.CrossRefGoogle Scholar
  48. Myers, M. L. 2011. Livestock rearing: its extent and health effects. Encyclopaedia of occupational health and safety. International Labor Organization, Geneva.Google Scholar
  49. Opio, C., Gerber, P., Mottet, A., Falcucci, A., Tempio, G., MacLeod, M., … and Steinfeld, H. 2013. Greenhouse gas emissions from ruminant supply chains–A global life cycle assessment. Food and agriculture organization of the United Nations (FAO), Rome, 1–214.Google Scholar
  50. Otte, M. J. and Chilonda, P. 2002. Cattle and small ruminant production systems in sub-Saharan Africa. A systematic review.Google Scholar
  51. Ouédraogo-Koné, S., Kaboré-Zoungrana, C. Y., and Ledin, I. 2008. Intake and digestibility in sheep and chemical composition during different seasons of some West African browse species. Tropical Animal Health and Production, 40(2), 155–164.CrossRefGoogle Scholar
  52. Palazzo, A., Vervoort, J. M., Mason-D’Croz, D., Rutting, L., Havlík, P., Islam, S., … and Zougmore, R. 2017. Linking regional stakeholder scenarios and shared socioeconomic pathways: quantified west African food and climate futures in a global context. Global Environmental Change, 45, 227–242.CrossRefGoogle Scholar
  53. Pandey, A. N. 1980. Vegetation and bovine population interactions in the Savanna grazing lands of Chandraprabha sanctuary, Varanasi 1. seasonal behaviour of grazing lands [India]. Tropical Ecology (India).Google Scholar
  54. Partey, S. T., Zougmoré, R. B., Ouédraogo, M., and Campbell, B. M. (2018). Developing climate-smart agriculture to face climate variability in West Africa: challenges and lessons learnt. Journal of cleaner Production, 187, 285–295.CrossRefGoogle Scholar
  55. Peacock, C. 2005. Goats—A pathway out of poverty. Small Ruminant Research, 60(1–2), 179–186.CrossRefGoogle Scholar
  56. Pelster, D. E., Gisore, B., Goopy, J., Korir, D., Koske, J. K., Rufino, M. C., and Butterbach-Bahl, K. 2016. Methane and nitrous oxide emissions from cattle excreta on an East African grassland. Journal of environmental quality, 45(5), 1531–1539.CrossRefGoogle Scholar
  57. Powell, J. M., Pearson, R. A., and Hiernaux, P. H. 2004. Crop–livestock interactions in the West African drylands. Agronomy journal, 96 (2), 469–483.CrossRefGoogle Scholar
  58. Powers, W., Auvermann, B., Cole, A., Gooch, C., Grant, R., Hatfield, J., . . . Powell, J. M. 2014. Chapter 5: Quantifying Greenhouse Gas Sources and Sinks in Animal Production Systems. In Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory. Office of the Chief Economist, U.S. Department of Agriculture. Washington. DC. USDA.Google Scholar
  59. Preston, T. R., and Leng, R. A. 1987. Matching ruminant production systems with available resources in the tropics and sub-tropics. Penambul Books.Google Scholar
  60. Reid, R. S., Serneels, S., Nyabenge, M., and Hanson, J. 2005. The changing face of pastoral systems in grass-dominated ecosystems of eastern Africa. Grasslands of the World, 19–76.Google Scholar
  61. Sejian, V., Samal, L., Haque, N., Bagath, M., Hyder, I., Maurya, V. P., … and Lal, R. 2015. Overview on adaptation, mitigation and amelioration strategies to improve livestock production under the changing climatic scenario. In Climate Change Impact on Livestock: Adaptation and Mitigation (pp. 359–397). Springer, New Delhi.CrossRefGoogle Scholar
  62. Smith, K. R., Woodward, A., Campbell-Lendrum, D., Chadee, D. D., Honda, Y., Liu, Q., … and Sauerborn, R. (2014). Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change.Google Scholar
  63. Soren, N. M., Sejian, V. and Malik, P. K. 2015. Enteric methane emission under different feeding systems. In Climate Change Impact on Livestock: Adaptation and Mitigation (pp. 187–208). Springer, New Delhi.CrossRefGoogle Scholar
  64. Sowande, O. S., and Sobola, O. S. 2008. Body measurements of West African dwarf sheep as parameters for estimation of live weight. Tropical Animal Health and Production, 40(6), 433–439.CrossRefGoogle Scholar
  65. Tallec, T., Klumpp, K., Hensen, A, Rochette, Y., and Soussana, J.-F. 2012. Methane emission measurements in cattle grazed pasture: a comparison of four methods. Biogeosciences, 9, 14407–14436.CrossRefGoogle Scholar
  66. Tavendale, M. H., Lane, G. A., Schreurs, N. M., Fraser, K., and Meagher, L. P. 2006. The effects of condensed tannins from Dorycnium rectum on skatole and indole ruminal biogenesis for grazing sheep. Australian journal of agricultural research, 56(12), 1331–1337.CrossRefGoogle Scholar
  67. Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla Gatti, R., Chevallier, F., … and Houghton, R. A. 2014. A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences, 11, 381–407.CrossRefGoogle Scholar
  68. Wilkes, A. Reisinger, A. Wollenberg, E. and van Dijk, S. 2017. Measurement, Reporting and Verification of Livestock GHG Emissions by Developing Countries in the UNFCCC: Current Practices and Opportunities for Improvement. CCAFS Report No. 17. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and Global Research Alliance for Agricultural Greenhouse Gases (GRA).Google Scholar
  69. Wilson R. T., 1988. Small ruminants production systems in tropical Africa. Small Ruminant Research, 1 (4): 305–325.CrossRefGoogle Scholar
  70. Zahradeen, D., Butswat, I. S. R., and Mbap, S. T. 2009. A note on factors influencing milk yield of local goats under semi-intensive system in Sudan savannah ecological zone of Nigeria. Livestock Research and Rural Development, 21(3), 34. Avaialble at:
  71. Zougmoré, R. B., Partey, S. T., Ouédraogo, M., Torquebiau, E., and Campbell, B. M. 2018. Facing climate variability in sub-Saharan Africa: analysis of climate-smart agriculture opportunities to manage climate-related risks. Cahiers Agricultures (TSI), 27(3), 1–9.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.ISRA, Centre de Recherches ZootechniquesKoldaSénégal
  2. 2.SELMETUniv. Montpellier, CIRAD, INRAMontpellierFrance
  3. 3.PPZS, Pastoral Systems and Dry LandsDakarSénégal
  4. 4.ISRA, Laboratoire National de l’Elevage et de Recherches VétérinairesDakar HannSénégal

Personalised recommendations