Advertisement

Tropical Animal Health and Production

, Volume 51, Issue 4, pp 911–918 | Cite as

Different ambient management intervention techniques and their effect on milk production and physiological parameters of lactating NiliRavi buffaloes during hot dry summer of subtropical region

  • Mehtab AhmadEmail author
  • Jalees Ahmed Bhatti
  • Muhammad Abdullah
  • Rahman Ullah
  • Qurat ul Ain
  • Muhammad Sajid Hasni
  • Mahboob Ali
  • Abdul Rashid
  • Imran Qaisar
  • Ghazunfar Rashid
  • Rafi Uddin
Regular Articles
  • 49 Downloads

Abstract

In tropical countries, one of the major threats for diary animal production is climate change. Ambient management interventions are beneficial and are the dire need of animal production in tropics. Ambient management intervention and its effect on physiological performance of lactating NiliRavi buffaloes were investigated during the hot dry months (April to June) of Pakistan. Fifteen lactating NiliRavi water buffaloes of similar size, age, and same parity were randomly stratified into three groups, comprising of five animals in each group, designated as group S, SF, and SFS. Animals of group S (control) were kept just under the shade while the animals in group SF were provided shade plus fan, animals in group SFS were provided the shade, fan as well as sprinklers during the hot day hours between 10:00 AM to 6:00 PM. Shed conditions were same for all animals, isonitrogenous and isocaloric feed was provided to all animals. Milk production decreased with the increase in ambient temperature. Average dry matter intake in group S, SF, and SFS were 75%, 80%, and 90% of the total feed offered to the experimental animals, respectively. The mean rectal temperatures (°F) were 101.69, 101.19, and 100.85 in group S, SF, and SFS, respectively. Heat stress had pronounced effect on blood glucose level as indicated by the mean glucose concentration in group S and SFS being recorded at 78.04 mg/dl and 90.47 mg/dl, respectively. It is concluded that the buffaloes should be provided with sprinklers and fans to minimize heat load and maximize the production during hot dry season.

Keywords

Production Buffalo Shower Hot dry summer 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aggarwal, A., Singh, M., 2008. Changes of skin and rectal temperature in lactating buffaloes provided with showers and wallowing during hotdry season, Tropical Animal Health and Production, 40, 223-228CrossRefGoogle Scholar
  2. Ahmad, S., Tariq, M., 2010. Heat stress management in water buffaloes: A review. In: Proceedings of the 9th World Buffalo Congress, Argentina. pp. 297310.Google Scholar
  3. Ahmad, M., Bhatti, J. A., Abdullah, M., Javed, K., Ali, M., Rashid, G., Uddin, R., Badini, A. H., Jehan, M., 2018. Effect of ambient management interventions on the production and physiological performance of lactating Sahiwal cattle during hot dry summer, Tropical Animal Health and Production, 50(6), 1249-1254CrossRefGoogle Scholar
  4. Aleena, J., Pragna, P., Archana, P. R., Sejian, V., Bagath, M., Krishnan, G., Manimaran, A., Beena, V., Kurien, E. K., Varma, G., Bhatta, R., 2016. Significance of Metabolic Response in Livestock for Adapting to Heat Stress Challenges, Asian Journal of Animal Sciences, 10, 224-234CrossRefGoogle Scholar
  5. AOAC., 2000. Official Methods of Analysis. 17th ed. Association of Analytical Chemists, Arlington, Virginia, USA.Google Scholar
  6. AvendanoReyes, L., AlvarezValenzuela, F. D., CorreaCalderon, A., SaucedoQuintero, J. S., Robinson, P. H., Fadel, J. G., 2006. Effect of cooling Holstein cows during the dry period on postpartum performance under heat stress conditions, Livestock Science, 105,198-206CrossRefGoogle Scholar
  7. Bahga, C. S., Sikka, S. S., Saijpal, S., 2009. Effects of seasonal stress on growth rate and serum enzyme levels in young crossbred calves, Indian Journal of Animal Research, 4, 148-152Google Scholar
  8. Bailey, K. E., Jones, C. M., Heinrichs, A. J., 2005. Economic returns to Holstein and Jersey herds under multiple component pricing, Journal of Dairy Science, 88, 2269-2280CrossRefGoogle Scholar
  9. Berman, A., Horovitz, T., 2012. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle, Journal of Dairy Science, 95, 3021-3031CrossRefGoogle Scholar
  10. Bernabucci, U., Lacetera, N., Ronchi, B., Nardone, A., 2002. Effects of the hot season on milk protein fractions in Holstein cows, Animal Research, 51(1), 25-33CrossRefGoogle Scholar
  11. Bruckmaier, R. M., Blum, J. W., 2004. Fractionized milk composition in dairy cows with sub clinical mastitis, Veterinarni Medicina Czech, 8, 283-290Google Scholar
  12. Burtis, C. A., Ashwood, E.R., Bruns, D. E., Sawyer, B. G., 2008. Tietz fundamentals of clinical chemistry. 6th ed. Saundres: St Louis, Missouri.Google Scholar
  13. Butler, G., Nielsen, J. H., Slots, T., Seal, C., Eyre, M. D., 2008. Fatty acid and fatsoluble antioxidant concentrations in milk from high and lowinput conventional and organic systems: seasonal variation, Journal of the Science of Food and Agriculture, 88, 1431-1441CrossRefGoogle Scholar
  14. Chanda, T., Debnath, G. K., Khan, K. L., Rahman, M. M., Chanda, G. C., 2017. Impact of heat stress on milk yield and composition in early lactation of Holstein Friesian crossbred cattle, Bangladesh Journal of Animal Science, 46(3), 192-197CrossRefGoogle Scholar
  15. Chaudhari, B. J., Singh, M., 2015. Relationship between udder, skin and milk temperature in lactating murrah buffaloes during the hothumid season, Buffalo Bulletin, 34(2), 181-188Google Scholar
  16. Chen, J. M., Schutz, K. E., Tucker, C. B., 2016. Cooling cows efficiently with water spray: Behavioral, physiological and production responses to sprinklers at the feed bunk, Journal of Dairy Science, 99(6), 4607-4017CrossRefGoogle Scholar
  17. Conte, G., Ciampolini, R., Cassandro, M., Lasagna, E., Calamari, L., Bernabucci, U., Abeni, F., 2018. Feeding and nutrition management of heatstressed dairy ruminants, Italian Journal of Animal Science, 17(3), 604-620CrossRefGoogle Scholar
  18. Daniel, S. J., Hasan, Q. Z., Murty, V. N., 1981. Note in water metabolism in lactating crossed cows, Indian Journal of Animal Science, 51, 358-360Google Scholar
  19. Das, S. K., Upadhyay, R. C., Madan, M. L., 1999. Heat stress in Murrah buffalo calves. Livestock Production Science, 61, 71-78CrossRefGoogle Scholar
  20. Das, K. S., Singh, G., Paul, S. S., Malik, R., Oberoi, P. S., Deb, S. M., 2011. Physiological responses and performance of NiliRavi buffalo calves under different washing frequency during hot summer months in tropics, Tropical Animal Health and Production, 43, 35-39CrossRefGoogle Scholar
  21. Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, K. R., 2016. Impact of heat stress on health and performance of dairy animals: A review, Veterinary World, 9(3), 260-268CrossRefGoogle Scholar
  22. Dash, S., Chakravarty, A. K., Singh, A., Upadhyay, A., Singh, M., Yousuf, S., 2016. Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review, Veterinary World, 9(3), 235-244CrossRefGoogle Scholar
  23. Davis, S., Mader, T., 2002. Effect of altered feeding and sprinkling on performance and body temperature of steers finished in the summer, Nabraska Beef Report. pp 6165Google Scholar
  24. DeRosa, G., Napolitano, F., Grasso, F., Pacelli, C., Bordi, A., 2005. On the development of a monitoring scheme of buffalo welfare at farm level, Italian Journal of Animal Science, 4, 115-125CrossRefGoogle Scholar
  25. Dobranic, V., Njari, B., Samardzija M., Miokovie, B., Resanovic, R., 2008. The influence of season on the chemical composition and the somatic cell count of bulk tank cow’s milk, Veterinarski Arhive, 78 (3), 235-242Google Scholar
  26. ElShwey, A. A., 2017. A Highlight on the Effect of Heat Stress on the Dairy Cattle Performance, Specialty Journal of Biological Sciences, 3 (3), 11-16Google Scholar
  27. Ganaie, A. H., Shanker, G., Nazir, A., Bumla, N. A., Ghasura, R. S., Mir, N. A., Wani, S. A., Dudhatra, G. B., 2013. Biochemical and physiological changes during thermal stress in Bovines, Journal of Veterinary Science and Technology, 4, 126-132Google Scholar
  28. Garner, J. C., Buckoin, R. A., Kunkle, W. E., Nordstedt, R. A., 1989. Sprinkled water and fans to reduce heat stress of beef cattle, Applied Engineering in Agriculture, 5, 99-101CrossRefGoogle Scholar
  29. Haque, N., Ludri, A., Hossain, S. A., Ashutosh, M., 2015. Alteration of metabolic profiles in young and adult Murrah buffaloes exposed to acute heat stress, International Journal of Applied Animal Science, 1(1), 23-29Google Scholar
  30. Hooda, O. K., Upadhyay, R. C., 2014. Physiological responses, growth rate and blood metabolites under feed restriction and thermal exposure in kids, Journal of Stress Physiology & Biochemistry, 10, 214-227Google Scholar
  31. Horowitz, M., 2001. Heat acclimation: Phenotypic plasticity and cues to the underlying molecular mechanisms, Journal of Thermal Biology, 26, 357-363CrossRefGoogle Scholar
  32. Hussain, Z., Javed, K., Hussain, S. M. I., Kiyani, G. S., 2006. Some environmental effects on productive performance of NiliRavi buffaloes in Azad Kashmir, Journal of Animal and Plant Sciences, 16(3–4), 66-69Google Scholar
  33. Javed, K., Babar, M. E., Shafiq, M., Ali, A., 2009. Environmental sources of variation for lactation milk yield in Nili Ravi buffaloes, Pakistan Journal of Zoology, 9, 79-83Google Scholar
  34. Kamal, T. H., Mehrez, A. Z., ElShinnawy, M. M., AbdelSamee, A. M., 1982. The role of water metabolism in the heat stress syndrome in Friesian Cattle, Proceedings of the 6th International Conference on Animal and Poultry Production, Cario, Egypt. 1: 14-26Google Scholar
  35. Kamboj, M. L., Paul, S. S., Chawla, D. S., 2000. Influence of wallowing on efficiency of feed utilization and reproductive performance of Nili-Ravi buffalo heifers, Annual Report, CIRB 1999-2000Google Scholar
  36. Khongdee, T., Sripoon, S., Vajrabukka, C., 2013. The effects of high temperature and roof modification on physiological responses of swamp buffalo (Bubalus bubalis) in the tropics, International Journal of Biometeorology, 57, 349-354CrossRefGoogle Scholar
  37. Koubkova, M., Knizkova, I., Munc, P., Hartlova, H., Flusser, J., Dolezal, O., 2002. Influence of high environmental temperatures and evaporative cooling on some physiological, hematological and biochemical parameters in highyielding dairy cows, Czech Journal of Animal Science, 47(8), 309-312Google Scholar
  38. Lough, D. S., Beede, D. K., Wilcox, C. J., 1990. Effects of feed intake and thermal stress on mammary blood flow and other physiological measurements in lactating dairy cows, Journal of Dairy Science, 73, 325-332CrossRefGoogle Scholar
  39. Mane, B. G., Chatli, M. K., 2015. Buffalo Milk: Saviour of Farmers and Consumers for Livelihood and Providing Nutrition, Agricultural Rural Development, 2, 5-11Google Scholar
  40. Marai, I. F. M., Habeeb A. A. M. (2010). Buffalo's biological functions as affected by heat stress: A review. Livestock Science 127: 89–109.CrossRefGoogle Scholar
  41. Marai, I. F. M., Daader, A. H., Soliman, A. M., El Menshawy, S. M. S., 2009. Nongenetic factors affecting growth and reproduction traits of buffaloes under dry management housing (in subtropical environment) in Egypt, Livestock Research for Rural Development, 21, 3–10Google Scholar
  42. Mignarri A., Bjorkhem, I., Magni, A., Federico, A., Gallus, G. N., Puppo, M. D., Dotti, M. T., 2015. Evaluation of cholesterol metabolism in cerebrotendinous xanthomatosis, Journal of Inherited Metabolism Disease 39:75-83. DOI  https://doi.org/10.1007/s1054501598731 CrossRefGoogle Scholar
  43. Pejman, H. A., Shahryar, A., 2012. Heat Stress in Dairy Cows (A Review), Research in Zoology, 2(4), 31-37Google Scholar
  44. Polsky, L., Marina, A. G., Keyserlingk, V., 2017. Invited review: Effects of heat stress on dairy cattle welfare, Journal of Dairy Science, 100(11), 8645-8657CrossRefGoogle Scholar
  45. Pragna, P., Archana, P. R., Aleena, J., Sejian, V., Krishnan, G., Bagath, M., Manimaran Beena V., Kurien, E. K., Varma, G., Bhatta, R., 2016. Heat stress and dairy cows: impact on both milk yield and composition, International Journal of Dairy Science 12 1-11Google Scholar
  46. Rahangdale, P. B., Ambulkar, D. R., Panchbhai, G. J., Kharwadkar, M. D., Kumar, N., 2010. Effect of wallowing and splashing on body temperature and milk yield in Murrah buffaloes during summer. In: Proceedings of International Buffalo Congress, II, 1–4 February 2010, New Delhi. p 102.Google Scholar
  47. Rasooli, A., Nouri, M., Khadjeh, G. H., Rasekh, A., 2004. The influences of seasonal variations on thyroid activity and some biochemical parameters of cattle, Iranian Journal of Veterinay Research, 5, 1383-1388Google Scholar
  48. Rhoads, M. L., Rhoads, R. P., VanBaale, M. J., Collier, R. J., Sanders, S. R., Weber, W. J., Crooker, B. A., Baumgard, L. H., 2009. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin, Journal of Dairy Science, 92, 1986-1997CrossRefGoogle Scholar
  49. SAS 9.1.3. 2005. 3rd Edition. SAS Institute Inc, Cary, NC, USA.Google Scholar
  50. Sejian, V., Maurya V. P., Naqvi, S. M. K. (2010). Adaptive capability as indicated by endocrine and biochemical responses of Malpura ewes subjected to combined stresses (thermal and nutritional) under semi-arid tropical environment. International Journal of Biometeorology, 54:653-661.Google Scholar
  51. Sevi, A., Annichiarico, G., Albenzio, M., Taibi, L., Muscio, A., DellAquila, S., 2001. Effects of solar radiation and feeding time on behavior, immune response and production of lactating ewes under high ambient temperature, Journal of Dairy Science, 84(3), 629-640CrossRefGoogle Scholar
  52. Shwartz, G., Rhoads, M. L., VanBaale, M. J., Rhoads, R. P., Baumgard, L. H., 2009. Effects of supplemental yeast culture on heat stressed lactating Holstein cows, Journal of Dairy Science, 92, 935-942CrossRefGoogle Scholar
  53. Singh, G., Kamboj, M. L., Patil, N. V. 2005. Effect of thermal protective measures during hot humid season on productive and reproductive performance of Nili-Ravi buffaloes. Indian Buffalo Journal, 3:101-104.Google Scholar
  54. Singh, S. P., Hooda, O. K., Kundu, S. S., Singh, S., 2012. Biochemical changes in heat exposed buffalo heifers supplemented with yeast, Tropical Animal Health and Production, 44, 1383-1387CrossRefGoogle Scholar
  55. Singh, M., Choudhari, B. K., Singh, J. K., Singh, A. K., Maurya, P. K., 2013. Effects of thermal load on buffalo reproductive performance during summer season, Journal of Biological Sciences, 1(1), 1-8Google Scholar
  56. Soly, M. J., Singh, S. V., 2001. Physiological and haematological responses of crossbred males under different housing conditions. MSc Thesis. NDRI, Deemed University, India.Google Scholar
  57. Steel, R., Torrie, J., Dickey, D. A., 1997. Principles and procedures of statistics. A biochemical Approaches 3rd Ed. McGrow Hill Book Co. New York USA.Google Scholar
  58. Tanaka, M., Kamiya, Y., Kamiya, M., Naka, Y., 2007. Effect of high environmental temperatures on ascorbic acid, sulfhydryl residue and oxidized lipid concentrations in plasma of dairy cows, Journal of Animal Science, 78: 301-306CrossRefGoogle Scholar
  59. Tietz, N. W et al. 1995. Clinical guide to laboratory tests. 3Auflage Philadelphia, Pa: WB Saunders. 2224Google Scholar
  60. Todorovic, M. J., Davidovic, V., Hristov, S., Stankovic, S., 2011. Effect of heat stress on milk production in dairy cows, Biotechnology in Animal Husbandry, 27 (3), 1017-1023CrossRefGoogle Scholar
  61. Tullo, E., Fontana, I., Pena, A., Fernandez, V. E., Norton, T., Berckmans, D., Guarino, M., 2017. Association between environmental predisposing risk factors and leg disorders in broiler chickens, Journal of Animal Science, 95, 1512-1520Google Scholar
  62. Voltorta, S. E., Gallardo, M. R., 2004. Evaporative cooling for Holstein dairy cows under grazing conditions, International Journal of Biometeorology, 48, 213-217CrossRefGoogle Scholar
  63. Wheelock, B., Rhoads, R. P., Vanbaale, M. J., Sanders, S. R., Baumgard, L. H., 2010. Effects of heat stress on energetic metabolism in lactating Holstein cows, Journal of Dairy Science, 93, 644-655CrossRefGoogle Scholar
  64. Yadav, A. S., Rathi, S. S., Dalal, D. D., Singh, B., 1994. Factors affecting economic traits in Tharparkar cattle, Indian Journal of Dairy Science, 47, 430-434Google Scholar
  65. Yasmin, A., Huma, N., Butt, M. S., Zahoor, T., Yasin, M., 2012. Seasonal variation in milk vitamin contents available for processing in Punjab, Pakistan, Journal of the Saudi Society of Agricultural Sciences, 11, 99-105CrossRefGoogle Scholar
  66. Zaia, D. A. M., Marques, F. R., Zaia, C. T. B. V., 2005. Spectrophotometric determination of total proteins in blood plasma: a comparative study among dyebinding methods, Brazilian Archives of Biology and Technology, 48(3), 385-388CrossRefGoogle Scholar
  67. Zhang, Z., Bi, M., Yang, J., Yao, H., Liu, Z., Xu, A., 2017. Effect of phosphorus deficiency on erythrocytic morphology and function in cows, Journal of Veterinary Science, 18(3), 333-340CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Mehtab Ahmad
    • 1
    Email author
  • Jalees Ahmed Bhatti
    • 1
  • Muhammad Abdullah
    • 1
  • Rahman Ullah
    • 2
  • Qurat ul Ain
    • 3
  • Muhammad Sajid Hasni
    • 4
  • Mahboob Ali
    • 3
  • Abdul Rashid
    • 3
  • Imran Qaisar
    • 3
  • Ghazunfar Rashid
    • 3
  • Rafi Uddin
    • 3
  1. 1.Department of Livestock ProductionUniversity of Veterinary and Animal SciencesLahorePakistan
  2. 2.Department of Dairy TechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
  3. 3.Livestock and Dairy Development DepartmentQuettaPakistan
  4. 4.Department of EpidemiologyUniversity of Veterinary and Animal SciencesLahorePakistan

Personalised recommendations