Tropical Animal Health and Production

, Volume 51, Issue 4, pp 893–904 | Cite as

Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants

  • S. Albores-Moreno
  • J. A. Alayón-GamboaEmail author
  • L. A. Miranda-Romero
  • B. Alarcón-Zúñiga
  • G. Jiménez-Ferrer
  • J. C. Ku-Vera
  • A. T. Piñeiro-Vázquez
Regular Articles


The objective of this study was to evaluate the influence of tree foliage species supplemented in ruminant diets based on Pennisetum purpureum on the in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production. Seven experimental diets were evaluated, including a control treatment based on P. purpureum (PT) grass, and six additional treatments supplemented with 30.0% foliage from Neomillspaughia emargiata (NE), Tabernaemontana amygdalifolia (TA), Caesalpinia gaumeri (CG), Piscidia piscipula (PP), Leucaena leucocephala (LL) and Havardia albicans (HA). A randomised complete block design repeated in two periods (block) was used. The highest gas production (P < 0.05) was recorded in treatments TA and PT (237 and 228 mL g−1, respectively). The highest in vitro digestibility of dry matter (IVDMD) and organic matter (IVOMD) (P < 0.05) was recorded in the control treatment PT (57.9% and 66.1%, respectively). Treatments LL, NE, TA and PP promoted greater microbial biomass synthesis (290, 223, 220 and 213 mg g−1, respectively) (P < 0.05). The proportion of propionic acid also increased in these latter treatments and in treatments CG and HA (P < 0.05). Additionally, treatments LL, PP, NE and TA decreased methane production (25.8, 29.5, 30.6 and 31.8 L kg−1 of digested dry matter, respectively). In conclusion, supplementation with L. leucocephala, P. piscipula, N. emargiata and T. amygdalifolia in ruminant diets based on P. purpureum is one feed alternative that can promote greater efficiency and synthesis of microbial biomass, increase the proportions of propionic and butyric acid and decrease the production of enteric methane by 15.6 to 31.6%.


Condensed tannins Tropical trees Greenhouse gases 



We acknowledge Ph.D. José Enrique Botello Álvarez and MsC. Marcela Guadalupe Téllez Martínez, for their support in the laboratory of the National Institute of Technology in Celaya, Guanajuato, and to Sayuri Hernández for her assistance with the experiments.

Funding information

We would like to thank the National Council of Science and Technology (CONACYT) for the scholarship granted to the first author and for financing the project “Cuantificación de emisiones de metano entérico y óxido nitroso en ganadería bovina en pastoreo y diseño de estrategias para la mitigación en el sureste de México” (CONACYT-SEP CB 2014).

Compliance with ethical standards

Conflict of interest

The author MsC. Samuel Albores Moreno has received research grant from CONACYT. The other authors declare that they have no conflict of interest.


  1. Alayón, G.J.A., Jiménez, F.G., Piñeiro, V.Á.T., Canul, S.J., Albores, M.S., Villanueva, L.G., Nahed, T.J. and Ku, V.J.C., 2018. Estrategias de mitigación de gases de efecto invernadero en la ganadería, Agroproductividad, 11(2), 11–15Google Scholar
  2. Albores, M.S., Alayón, J.A.G., Ayala, A.J.B., Solorio, F.J.S., Aguilar, C.F.P., Olivera, L.C. and Ku, J.C.V., 2017. Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass, Tropical Animal Health and Production, 49(4), 857–866CrossRefGoogle Scholar
  3. Archimède, H., Eugène, M., Magdeleine, C. M., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P., Doreau, M., 2011. Comparison of methane production between C3 and C4 grasses and legumes, Animal Feed Science and Technology, 166, 59–64CrossRefGoogle Scholar
  4. Archimède, H., Martin, C., Periacarpin, F., Rochette, Y., Silou, T., Etienne, C., Anais and Doreau, M., 2014. Methane emission of Blackbelly rams consuming whole sugarcane forage compared with Dichanthium sp. Hay, Animal Feed Science and Technology, 190, 30–37Google Scholar
  5. Association Official Analytical Chemists (AOAC), 1990. Official Methods of Analysis. 15th ed (Arlington, Virginia, U.S.A.)Google Scholar
  6. Bayssa, M., Negesse, T. and Tolera, A., 2016. Leaf biomass yield, chemical composition, in vitro gas and methane production and rumen degradation characteristics of some woody plant species in Afar rangeland of north eastern Ethiopia, Middle-East Scientific Research, 24(4), 1252–1265Google Scholar
  7. Bhatta, R., Saravanan, M., Baruah, L. and Prasad, C.S., 2015. Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production, Journal Applied Microbiology, 118(3), 557–564CrossRefGoogle Scholar
  8. Blümmel, M. and Lebzien, P., 2001. Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques, Livestock Production Science, 68(2–3), 107–117CrossRefGoogle Scholar
  9. Blümmel, M., Steingass, H. and Becker, K., 1997. The relationship between in vitro gas production, in vitro microbial biomass and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages, British Journal of Nutrition, 77(6), 911–921CrossRefGoogle Scholar
  10. Bonnet, O.J., Meuret, M., Tischler, M.R., Cezimbra, I.M., Azambuja, J.C. and Carvalho, P.C., 2015. Continuous bite monitoring: a method to assess the foraging dynamics of herbivores in natural grazing conditions, Animal Production Science, 55(3), 339–349CrossRefGoogle Scholar
  11. Carulla, J.E., Kreuzer, M., Machmüller, A. and Hess, H.D., 2005. Supplementation of Acacia mearnsii tannin decreases methanogenesis and urinary nitrogen in forage-fed sheep, Australian Journal of Agricultural Research, 56(9), 961–970CrossRefGoogle Scholar
  12. Cherdthong, A., Wanapat, M., Rakwongrit, D., Khota, W., Khantharin, S., Tangmutthapattharakun, G. and Phesatcha, K., 2014. Supplementation effect with slow-release urea in feed blocks for Thai beef cattle nitrogen utilization, blood biochemistry, and hematology, Tropical Animal Health and Production, 46(2), 293–298CrossRefGoogle Scholar
  13. Cuartas, C.A., Naranjo, J.F., Tarazona, A.M., Murgueitio, E., Chará, J.D., Ku, V.J.C., Solorio, F., Flores, M., Solorio, B. and Barahona, R., 2014. Contribution of intensive silvopastoral systems to the adaptation and mitigation of climate change, Revista Colombiana de Ciencias Pecuarias, 27(2), 76–94Google Scholar
  14. Denek, N., Aydin, S.S. and Can, A., 2017. The effects of dried pistachio (Pistachio vera L.) by-product addition on corn silage fermentation and in vitro methane production, Journal Applied Animal Research, 45(1), 185–189CrossRefGoogle Scholar
  15. Ellis, J., Dijkstra, J., France, J., Parsons, A.J., Edwards, G.R., Rasmussen, S., Kebreab, E. and Bannink, A., 2012. Effect of high-sugar grasses on methane emissions simulated using a dynamic model, Journal Dairy Science, 95(1), 272–285CrossRefGoogle Scholar
  16. Elmasry, A.M.A., Mendoza, G.D., Miranda, L.A., Vázquez, G., Salem, A.Z.M. and Hernández, P.A., 2016. Effects of types and doses of yeast on gas production and in vitro digestibility of diets containing maize (Zea mays) and lucerne (Medicago sativa) or oat hay, South African Journal Animal Science, 46(4), 391–397CrossRefGoogle Scholar
  17. García, E., 1973. Modificación al sistema climático de Koppen, (Instituto de Geografía, UNAM, México)Google Scholar
  18. Gaviria, X., Naranjo, R.J.F., Bolívar, V.D.M. and Barahona, R.R., 2015. Consumo y digestibilidad en novillos cebuínos en un sistema silvopastoril intensivo, Archivos de Zootecnia, 64(245), 21–27CrossRefGoogle Scholar
  19. Gemeda, B.S. and Hassen, A., 2015. Effect of tannin and species variation on in vitro digestibility, gas, and methane production of tropical browse plants, Asian-Australasian Journal of Animal Sciences, 28(2), 188–199CrossRefGoogle Scholar
  20. Gerber, P.J., Steinfeld, H., Herderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. and Tempio, G., 2013. Tackling climate change through livestock a global assessment of emission and mitigation opportunities, (Food and Agriculture Organization (FAO), Roma)Google Scholar
  21. Gómez, T., González, C., Ortiz, S.L., Vera, J.C.K., Pinto, C.A. and García, J.R.S., 2017. Dominancia, composición química-nutritiva de especies forrajeras y fitomasa potencial en una selva secundaria, Agricultura, Sociedad y Desarrollo, 14(4), 617–634CrossRefGoogle Scholar
  22. Gunun, P., Gunun, N., Cherdthong, A., Wanapat, M., Polyorach, S., Sirilaophaisan, S., Wachirapakorn, C. and Kang, S., 2017. In vitro rumen fermentation and methane production as affected by rambutan peel powder, Journal of Applied Animal Research, 46(1), 626–631CrossRefGoogle Scholar
  23. Gurbuz, Y., 2009. Efectos del contenido de taninos condensados de algunas especies de leguminosas en la emisión de gas metano, Revista Cubana de Ciencias Agrícolas 43(3), 265–273Google Scholar
  24. Hess, H.D., Monsalve, L.M., Lascano, C.E., Carulla, J.E., Díaz, T.E. and Kreuzer, M., 2003. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis, Australian Journal of Agricultural Research, 54(7), 703–713CrossRefGoogle Scholar
  25. Hoehn, A.N., Titgemeyer, E.C., Nagaraja, T.G., Drouillard, J.S., Miesner, M.D. and Olson, K.C., 2018. Effects of high condensed-tannin substrate, prior dietary tannin exposure, antimicrobial inclusion, and animal species on fermentation parameters following a 48 h in vitro incubation, Journal of Animal Science, 96(1), 343–353CrossRefGoogle Scholar
  26. Hristov, A.N., Oh, J., Firkins, J.L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H.P.S., Adesogan, A.T., Yang, W., Lee, W., Gerber, P.J., Henderson, B. and Tricarico, J.M., 2013. Mitigation of methane and nitrous oxide emissions from animal operations: A review of enteric methane mitigation options, Journal of Animal Science, 91(11), 5045–5069CrossRefGoogle Scholar
  27. Hu, W., Liu, J., Wu, Y., Guo, Y. and Ye, J., 2006. Effects of tea saponins on in vitro ruminal fermentation and growth performance in growing Boer goat, Archives of Animal Nutrition, 60(1), 89–97CrossRefGoogle Scholar
  28. Jansson, I., 2001. Hierarchical summer browsing by goats in the dry savanna of south-western Botswana, Minor Field Studies No. 165, (Swedish University, Upsala, Sweden)Google Scholar
  29. Jolly, S. and Wallace, A., 2007. Best Practice for Production Feeding of Lambs: A Review of the Literature. Meat and Livestock Australia Limited, (Sydney, Australia, NSW)Google Scholar
  30. Kajikawa, H., Tajima, K., Mitsumori, M. and Takenaka, A., 2007. Effects of amino nitrogen on fermentation parameters by mixed ruminal microbes when energy or nitrogen is limited, Journal of Animal Science, 78(2), 121–128CrossRefGoogle Scholar
  31. Krause, D.O., Smith, W.J. and McSweeney, C.S., 2004. Use of community genome arrays (CGAs) to assess the effects of Acacia angustissima on rumen ecology, Microbiology, 150(9), 2899–2909CrossRefGoogle Scholar
  32. Krishnamoorthy, U., Rymer, C. and Robinson, P.H., 2005. The in vitro gas production technique: limitations and opportunities, Animal Feed Science and Technology, 123–124, 1–7Google Scholar
  33. Ku, V.J.C., Ayala, B.A.J., Solorio, S. F.J., Briceño, P.E.G., Ruiz, G.A., Piñeiro, V.A.T., Barros, R.M., Soto, A.A., Espinoza, H.J.C., Albores, M.S., Chay, C.A.J., Aguilar, P.C.F. and Ramírez, A.L., 2013. Tropical tree foliages and shrubs as feed additives in ruminant rations. In: A. Fattah and Z.M. Salem (eds) Nutritional Strategies of Animal Feed Additives, Nova Sci. Publishers, New York, 59–76Google Scholar
  34. Leng, R.A., 2011. The rumen a fermentation vat or a series of organized structured microbial consortia: implications for the mitigation of enteric methane production by feed additives, Livestock Research for Rural Development, Accessed 15 may 2018
  35. Lila, Z.A., Mohammed, N., Kanda, S., Kamada, T. and Itabashi, H., 2003. Effect of Sarsaponin on Ruminal Fermentation with Particular Reference to Methane Production in vitro, Journal Dairy Science, 86(10), 3330–3336CrossRefGoogle Scholar
  36. Lorenz, M., Alkhafadji, M., Stringano, L., Nilsson, E., Mueller-Harvey, S.I. and Udén, P., 2014. Relationship between condensed tannin structures and their ability to precipitate feed proteins in the rumen, Journal Science of Food and Agriculture, 94(5), 963–968CrossRefGoogle Scholar
  37. Makkar, H.P.S., 2003. Chemical, protein precipitation and bioassays for tannins, tannin levels and activity in unconventional feeds, and effects and fate of tannins. In: H.P.S. Makkar (ed), Quantification of Tannins in Tree and Shrub Foliage, Springer, Dordrecht, 1–42CrossRefGoogle Scholar
  38. Makkar, H.P.S., Blümmel, M. and Becker, K., 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques, British Journal of Nutrition, 73(6), 897–913CrossRefGoogle Scholar
  39. Makkar, H.P., Siddhuraju, P., Becker, K., Siddhuraju, P. and Becker, K., 2007. Plant secondary metabolites, (Humana Press Inc., Totowa, New Jersey, USA)Google Scholar
  40. McAllister, T.A. and Newbold, C.J., 2008. Redirecting rumen fermentation to reduce methanogenesis, Australian Journal Experimental Agriculture, 48(2), 7–13CrossRefGoogle Scholar
  41. McCullough, H., 1967. The determination of ammonia in whole blood by direct colorimetric method, Clinica Chemica Acta, 17(2), 297–304CrossRefGoogle Scholar
  42. Menke, K.H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid, Animal Research Development, 28, 7–55Google Scholar
  43. Min, B.R., Solaiman, S., Terrill, T., Ramsay, A. and Mueller, H.I., 2015. The effects of tannins-containing ground pine bark diet upon nutrient digestion, nitrogen balance, and mineral retention in meat goats, Journal of Animal Science Biotechnology, 6(1), 1–8CrossRefGoogle Scholar
  44. Miranda, F. and Hernández, X.E., 1963. Los tipos de vegetación de México y su clasificación, Boletín de la Sociedad Botánica de México, 28, 29–179Google Scholar
  45. Miranda, R.L.A., Vázquez, M.P., Améndola, M.R., Sandoval, G.L. and González, O.R., 2015. Cuantificación de las fracciones fermentables de alfalfa y tuna por la técnica de producción de gas, In: Asociación Latinoamericana de Producción Animal (ed), XXIV Congreso de la asociación Latinoamericana de producción animal y XL Congreso de la sociedad Chilena de producción animal. Puerto Varas, Chile, 575Google Scholar
  46. Monforte, B.G.E., Sandoval, C.C.A., Ramírez, A.L. and Capetillo, L.C.M., 2005. Defaunating capacity of tropical fodder trees: Effects of polyethylene glycol and its relationship to in vitro gas production, Animal Feed Science and Technology, 123-124(1), 313–327CrossRefGoogle Scholar
  47. Montgomery, D.C., 2013. Design and Analysis of Experiments 8the ed, (Wiley & Sons, New Jersey)Google Scholar
  48. Naranjo, J.F., Cuartas, C.A., Murgueitio, E., Chará, J. and Barahona, R., 2012: Balance de gases de efecto invernadero en sistemas silvopastoriles intensivos con Leucaena leucocephala en Colombia, Livestock Research for Rural Development,, Accessed 15 may 2018
  49. National Research Council, 2016. Nutrient Requirements of Beef Cattle: Eighth Revised Edition.,, Accessed 28 may 2018
  50. Newbold, C.J., López, S., Nelson, N., Ouda, J.O., Wallace, R.J. and Moss, A.R., 2005. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro, British Journal Nutrition, 94(1), 27–35CrossRefGoogle Scholar
  51. Niderkorn, V., Baumont, R., Le Morvan, A. and Macheboeuf, D., 2011. Occurrence of associative effects between grasses and legumes in binary mixtures on in vitro rumen fermentation characteristics, Journal of Animal Science, 89(4), 1138–1145CrossRefGoogle Scholar
  52. Paengkoum P., Phonmun, T., Liang, J.B., Huang, X.D., Tan, H.Y. and Jahromi, M.F., 2015. Molecular weight, protein binding affinity and methane mitigation of condensed tannins form mangosteen-peel (Garcinia mangostana L.), Asian-Australasian Journal of Animal Science, 28 (10), 1442–1448Google Scholar
  53. Pal, K., Patra, A. K., Sahoo, A. and Kumawat, P. K. 2015. Evaluation of several tropical tree leaves for methane production potential, degradability and rumen fermentation in vitro, Livestock Science, 180, 98–105CrossRefGoogle Scholar
  54. Patra, A. K., 2010. Aspects of nitrogen metabolism in sheep-fed mixed diets containing tree and shrub foliages, British journal of nutrition, 103(9), 1319–1330CrossRefGoogle Scholar
  55. Patra, A.K. and Saxena, J., 2011. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition, Journal of the Science of Food and Agriculture, 91(1), 24–37CrossRefGoogle Scholar
  56. Patra, A.K., Min, B.R., Saxena, J., 2012. Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants, In: A.K. Patra (ed.) Dietary phytochemicals and microbes, Springer, Netherlands, 237–262CrossRefGoogle Scholar
  57. Patra, A., Park, T., Kim, M. and Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances, Journal of Animal Science and Biotechnology, 8(1), 1–18CrossRefGoogle Scholar
  58. Pell, A.N. and Schofield, P., 1993. Computerized monitoring of gas production to measure forage digestion in vitro, Journal Dairy Science, 76(4), 1063–1073CrossRefGoogle Scholar
  59. Piñeiro, V.A.T., Canul, J.R.S., Alayón, J.A.G., Chay, A.J.C., Ayala, A.J.B., Aguilar, C.F.P., Solorio, F.J.S. and Ku, J.C.V., 2015. Potential of condensed tannins for the reduction of emissions of enteric methane and their effect on ruminant productivity, Archivos de Medicina Veterinaria, 47(3), 263–272CrossRefGoogle Scholar
  60. Piñeiro, V.A.T., Canul, J.R.S., Casanova, L.F., Chay, C.A.J., Ayala, B.J.A., Aguilar, C.F.P., Solorio, F.J.S. and Ku, J.C.V., 2017. Enteric methane emission in sheep fed Pennisetum purpureumand tropical trees containing condensed tannins, Revista Mexicana de Ciencias Pecuarias, 8(2), 111–119CrossRefGoogle Scholar
  61. Piñeiro, V.A.T., Jiménez, F.G., Alayon, G.J.A., Chay, C.A.J., Ayala, B.A.J., Aguilar, P.C.F. and Ku, V.J.C., 2018. Effects of quebracho tannin extract on intake, digestibility, rumen fermentation, and methane production in crossbred heifers fed low-quality tropical grass, Tropical Animal Health and Production, 50(1), 29–36CrossRefGoogle Scholar
  62. Puchala, R., Min, B.R., Goetsch, A.L. and Sahlu, T., 2005. The effect of condensed tannin-containing forage on methane emission by goats, Journal of Animal Science, 83(1), 182–186CrossRefGoogle Scholar
  63. Puchala, R., Animut, G., Patra, A.K., Detweiler, G.D., Wells, J.E., Varel, V.H., Sahlu, T. and Goetsch, A.L., 2012. Effects of different fresh-cut forages and their hays on feed intake, digestibility, heat production, and ruminal methane emission by Boer × Spanish goats, Journal of Animal Science, 90 (8), 2754–2762CrossRefGoogle Scholar
  64. Sallam, S.M.A., Nasser, M.E.A., El-Waziry, A.M., Bueno, I.C.S. and Abdalla, A.L., 2007. Use of an in vitro rumen gas production technique to evaluate some ruminant feedstuffs, Journal Applied Sciences Research, 3(1), 34–41Google Scholar
  65. SAS, 2006. Institute Inc., SAS/STAT. Software, ver. 9.00. SAS, (Cary, NC, USA)Google Scholar
  66. Soltan, Y.A., Morsy, A.S., Sallam, S.M.A., Louvandini, H. and Abdalla, A.L., 2012. Comparative in vitro evaluation of forage legumes (prosopis, acacia, atriplex, and leucaena) on ruminal fermentation and methanogenesis, Journal of Animal and Feed Sciences, 21(4), 759–772CrossRefGoogle Scholar
  67. Soltan, Y.A., Morsy, A.S., Sallam, S.M., Lucas, R.C., Louvandini, H., Kreuzer, M. and Abdalla, A.L., 2013. Contribution of condensed tannins and mimosine to the methane mitigation caused by feeding Leucaena leucocephala, Archives of Animal Nutrition, 67(3), 169–184CrossRefGoogle Scholar
  68. Suharti, S., Astuti, D.A., Wina, E. and Toharmat, T., 2011. Rumen microbial population in the in vitro fermentation of different ratios of forage and concentrate in the presence of whole lerak (Sapindus rarak) fruit extract, Asian-Australasian Journal of Animal Science, 24(8), 1086–1091CrossRefGoogle Scholar
  69. Szumacher, S.M. and Cieślak, A., 2010. Potential of phytofactors to mitigate rumen ammonia and methane production, Journal of Animal and Feed Sciences, 19(3), 319–337CrossRefGoogle Scholar
  70. Tan, H.Y., Sieo, C.C., Abdullah, N., Liang, J.B., Huang, X.D. and Ho, Y.W., 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro, Animal Feed Science and Technology, 169(3–4), 185–193CrossRefGoogle Scholar
  71. Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B. and France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds, Animal Feed Science and Technology, 48(3–4), 185–197CrossRefGoogle Scholar
  72. Ungerfeld, E.M., 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis, Frontiers in Microbiology, 6(37), 1–17Google Scholar
  73. Ungerfeld, E.M., Rust, S.R., Burnett, R., 2003. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis, Reproduction Nutrition Development, 43(2), 189–202CrossRefGoogle Scholar
  74. Valencia, S.S.S., Piñeiro, V.T.A., Molina, B.I.S., Lazos, B.I.J, Uuh, N.J.J., Segura C.M.R., Ramírez, A.L., Solorio, S.F.J. and Ku, V.J.C., 2018. Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass, Agricultural and Forest Meteorology, 258, 108–116Google Scholar
  75. Van Soest, P.J., 1965. Symposium on factors influencing the voluntary intake of herbage by ruminants: voluntary intake in relation to chemical composition and digestibility, Journal of Animal Science, 24(3), 834–843CrossRefGoogle Scholar
  76. Van Soest, P.J., Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fibre, neutral detergent fibre and nonstarch polysaccharides in relation to animal nutrition, Journal Dairy Science, 74 (10), 3583–3597CrossRefGoogle Scholar
  77. Vargas, J., Pabón, M. and Carulla, J., 2014. Producción de metano in vitro en mezcla de gramíneas-leguminosas del trópico alto colombiano, Archivos de Zootecnia, 63(243), 397–407Google Scholar
  78. Wang, Y., Alexander, T. W. and McAllister, T. A., 2009. In vitro effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on rumen bacterial populations and fermentation, Journal of the Science of Food and Agriculture, 89(13), 2252–2260.CrossRefGoogle Scholar
  79. Wischer, G., Boguhn, J., Steingaß, H., Schollenberger, M. and Rodehutscord, M., 2013. Effects of different tannin-rich extracts and rapeseed tannin monomers on methane formation and microbial protein synthesis in vitro, Animal, 7(11), 1796–1805CrossRefGoogle Scholar
  80. Wolin, M.J. and Miller, T.L., 2006. Control of rumen methanogenesis by inhibiting the growth and activity of methanogens with hydroxymethylglutaryl-SCoA inhibitors. International Congress Series, 1293, 131–137CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • S. Albores-Moreno
    • 1
  • J. A. Alayón-Gamboa
    • 1
    Email author
  • L. A. Miranda-Romero
    • 2
  • B. Alarcón-Zúñiga
    • 2
  • G. Jiménez-Ferrer
    • 1
  • J. C. Ku-Vera
    • 3
  • A. T. Piñeiro-Vázquez
    • 4
  1. 1.Southern Frontier CollegeCampecheMexico
  2. 2.Graduate Department of Animal ProductionAutonomous University of ChapingoChapingoMexico
  3. 3.Department of Veterinary Medicine and Animal ScienceAutonomous University of YucatanMeridaMexico
  4. 4.Technological Institute of ConkalDivision of Graduate Studies and ResearchConkalMexico

Personalised recommendations