Advertisement

Cross-sectional study of the G and P genotypes of rotavirus A field strains circulating in regularly vaccinated dairy cattle herds

  • Juliana T. T. Fritzen
  • Elis Lorenzetti
  • Marcos V. Oliveira
  • Vinicius R. Bon
  • Henderson Ayres
  • Alice F. Alfieri
  • Amauri Alcindo Alfieri
Regular Articles

Abstract

Neonatal diarrhea is the main cause of morbidity and mortality in calves up to 30 days old, and rotavirus A (RVA) is the main viral etiology. RVA vaccines are one of the main tools for diarrhea control in neonates. The aim of this cross-sectional study was to monitor by RT-PCR the G and P genotypes of RVA strains identified in dairy cattle herds regularly vaccinated with the RVA UK strain (G6P[5]). Of the 14 randomly selected herds, two were excluded because no calf was diagnosed with diarrhea on the day of fecal collection. Another six herds were also excluded from the study because all 20 diarrheic fecal samples evaluated were RT-PCR-negative. In the remaining six herds, 17 (25.4%) of the 67 diarrheic samples were RVA-positive. One G and P amplicon from each herd were selected for nucleotide sequencing. In the phylogenetic analysis, five RVA strains presented the G6P[11] genotype, and one presented the G10P[11] genotype. The G6 genotype present in all RVA field strains clustered into a distinct phylogenetic arrangement (lineage III) of the UK vaccine strain (lineage IV), characterizing the emergence of a phylogenetically distant G6 strain. In addition, we observed the emergence of strains with G10 and P[11] genotypes characterizing failure in heterologous immune protection. These results show the epidemiological importance of constant monitoring of RVA strains in vaccinated cattle herds and the low frequencies of diarrhea and diagnosis of RVA suggest that a regular vaccination program reduces the frequency and severity of RVA diarrhea in suckling calves.

Keywords

Dairy calf Diarrhea RVA Genotype Vaccine 

Notes

Acknowledgements

The authors thank the following Brazilian Institutes for financial support: the National Council of Scientific and Technological Development (CNPq), the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), and the Araucária Foundation (FAP/PR). Alfieri, A.A. and Alfieri, A.F are recipients of CNPq fellowships.

Funding information

This study was funded by INCT Leite (Grant number 465725/ 2014–7)

Compliance with ethical standards

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. Adah, M.I., Nagashima, S., Wakuda, M., and Taniguchi, K., 2003. Close relationship between G8-serotype bovine and human rotaviruses isolated in Nigeria. Journal of Clinical Microbiology, 41, 3945-3950CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al Mawly, J., Grinberg, A., Prattley, D., Moffat, J., Marshall, J., and French, N., 2015. Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms. The Veterinary Journal, 203, 155-160CrossRefPubMedGoogle Scholar
  3. Alfieri, A.F., Alfieri, A.A., Barreiros, M.A., Leite, J.P., and Richtzenhain, L.J., 2004. G and P genotypes of group A rotavirus strains circulating in calves in Brazil, 1996-1999. Veterinary Microbiology, 99, 167-173CrossRefPubMedGoogle Scholar
  4. Alfieri, A.A., Parazzi, M.E., Takiuchi, E., Medici, K.C., and Alfieri, A.F., 2006. Frequency of group A rotavirus in diarrhoeic calves in Brazilian cattle herds, 1998-2002. Tropical Animal Health and Production, 38, 521-526Google Scholar
  5. Alkan, F., Ozkul, A., Oguzoglu, T.C., Timurkan, M.O., Caliskan, E., Martella, V., and Burgu, I., 2010. Distribution of G (VP7) and P (VP4) genotypes of group A bovine rotaviruses from Turkish calves with diarrhea, 1997-2008. Veterinary Microbiology, 141, 231-237CrossRefPubMedGoogle Scholar
  6. Badaracco, A., Garaicoechea, L., Rodriguez, D., Uriarte, E.L., Odeon, A., Bilbao, G., Galarza, R., Abdala, A., Fernandez, F., and Parreno, V., 2012. Bovine rotavirus strains circulating in beef and dairy herds in Argentina from 2004 to 2010. Veterinary Microbiology, 158, 394-399CrossRefPubMedGoogle Scholar
  7. Badaracco, A., Garaicoechea, L., Matthijnssens, J., Louge Uriarte, E., Odeon, A., Bilbao, G., Fernandez, F., Parra, G.I., and Parreno, V., 2013a. Phylogenetic analyses of typical bovine rotavirus genotypes G6, G10, P[5] and P[11] circulating in Argentinean beef and dairy herds. Infection, Genetics and Evolution, 18, 18-30Google Scholar
  8. Badaracco, A., Matthijnssens, J., Romero, S., Heylen, E., Zeller, M., Garaicoechea, L., Van Ranst, M., and Parreno, V., 2013b. Discovery and molecular characterization of a group A rotavirus strain detected in an Argentinean vicuna (Vicugna vicugna). Veterinary Microbiology, 161, 247-254CrossRefPubMedGoogle Scholar
  9. Banyai, K., Kemenesi, G., Budinski, I., Foldes, F., Zana, B., Marton, S., Varga-Kugler, R., Oldal, M., Kurucz, K., and Jakab, F., 2017. Candidate new rotavirus species in Schreiber’s bats, Serbia. Infection, Genetics and Evolution, 48, 19-26Google Scholar
  10. Barreiros, M.A., Alfieri, A.F., Medici, K.C., Leite, J.P., and Alfieri, A.A., 2004. G and P genotypes of group A rotavirus from diarrhoeic calves born to cows vaccinated against the NCDV (P[1],G6) rotavirus strain. Journal of Veterinary Medicine, 51, 104-109Google Scholar
  11. Bartels, C.J., Holzhauer, M., Jorritsma, R., Swart, W.A., and Lam, T.J., 2010. Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves. Preventive Veterinary Medicine, 93, 162-169CrossRefPubMedGoogle Scholar
  12. Buzinaro, M.G., Samara, S.I., Pereira, E.A.S., Fuentes, D.B., and Oliveira, M.C.S., 2009. Ocorrência dos Genótipos G e P de Rotavirus do grupo A em Bezerros de Rebanhos de Corte no Estado de São Paulo, Brasil. Arquivos do Instituto Biológico, 76, 99-105Google Scholar
  13. Cashman, O., Lennon, G., Sleator, R.D., Power, E., Fanning, S., and O'Shea, H., 2010. Changing profile of the bovine rotavirus G6 population in the south of Ireland from 2002 to 2009. Veterinary Microbiology, 146, 238-244CrossRefGoogle Scholar
  14. Chang, K.O., Parwani, A.V., and Saif, L.J., 2000. Comparative sequence analysis of the VP7 genes of G6, G8 and G10 bovine group A rotarviruses and further characterization of G6 subtypes. Archives of Virology, 145, 725-737CrossRefGoogle Scholar
  15. Cho, Y.I., and Yoon, K.J., 2014. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. Journal of Veterinary Science, 15, 1-17CrossRefGoogle Scholar
  16. Conner, M.E., Crawford, S.E., Barone, C., and Estes, M.K., 1993. Rotavirus vaccine administered parenterally induces protective immunity. Journal of Virology, 67, 6633-6641Google Scholar
  17. Cortese, V.S., 2009. Neonatal immunology, Veterinary Clinics of North America: Food Animal Practice, 25, 221-227PubMedPubMedCentralGoogle Scholar
  18. Coura, F.M., Freitas, M.D., Ribeiro, J., de Leme, R.A., de Souza, C., Alfieri, A.A., Facury Filho, E.J., de Carvalho, A.U., Silva, M.X., Lage, A.P., and Heinemann, M.B., 2015. Longitudinal study of Salmonella spp., diarrheagenic Escherichia coli, Rotavirus, and Coronavirus isolated from healthy and diarrheic calves in a Brazilian dairy herd. Tropical Animal Health and Production, 47, 3-11Google Scholar
  19. Durel, L., Rose, C., Bainbridge, T., Roubert, J., Dressel, K.-U., Bennemann, J., Rückner, A., Vahlenkamp, T., and Maillard, R., 2017. Immune response of mature cows subjected to annual booster vaccination against neonatal calf diarrhoea with two different commercial vaccines: A non-inferiority study. Livestock Science, 204, 52-58Google Scholar
  20. Gentsch, J.R., Glass, R.I., Woods, P., Gouvea, V., Gorziglia, M., Flores, J., Das, B.K., and Bhan, M.K., 1992. Identification of group A rotavirus gene 4 types by polymerase chain reaction. Journal of Clinical Microbiology, 30, 1365-1373PubMedPubMedCentralGoogle Scholar
  21. Gonzalez, D.D., Mozgovoj, M.V., Bellido, D., Rodriguez, D.V., Fernandez, F.M., Wigdorovitz, A., Parreno, V.G., and Dus Santos, M.J., 2010. Evaluation of a bovine rotavirus VP6 vaccine efficacy in the calf model of infection and disease. Veterinary Immunology and Immunopathology, 137, 155-160CrossRefPubMedGoogle Scholar
  22. Gouvea, V., Glass, R.I., Woods, P., Taniguchi, K., Clark, H.F., Forrester, B., and Fang, Z.Y., 1990. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. Journal of Clinical Microbiology, 28, 276-282PubMedPubMedCentralGoogle Scholar
  23. Gurgel, R.Q., Cuevas, L.E., Vieira, S.C., Barros, V.C., Fontes, P.B., Salustino, E.F., Nakagomi, O., Nakagomi, T., Dove, W., Cunliffe, N., and Hart, C.A., 2007. Predominance of rotavirus P[4]G2 in a vaccinated population, Brazil. Emerging Infectious Diseases Journal, 13, 1571-1573CrossRefGoogle Scholar
  24. Kaplon, J., Fremy, C., Bernard, S., Rehby, L., Aho, S., Pothier, P., and Ambert-Balay, K., 2013. Impact of rotavirus vaccine on rotavirus genotypes and caliciviruses circulating in French cattle. Vaccine, 31, 2433-2440Google Scholar
  25. Karayel, I., Feher, E., Marton, S., Coskun, N., Banyai, K., and Alkan, F., 2017. Putative vaccine breakthrough event associated with heterotypic rotavirus infection in newborn calves, Turkey, 2015. Veterinary Microbiology, 201, 7-13Google Scholar
  26. Kumar, S., Stecher, G., and Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874Google Scholar
  27. Lorenzetti, E., da Silva Medeiros, T.N., Alfieri, A.F., and Alfieri, A.A., 2011. Genetic heterogeneity of wild-type G4P[6] porcine rotavirus strains detected in a diarrhea outbreak in a regularly vaccinated pig herd. Veterinary Microbiology, 154, 191-196Google Scholar
  28. Malik, Y.S., Sharma, K., Vaid, N., Chakravarti, S., Chandrashekar, K.M., Basera, S.S., Singh, R., Minakshi, Prasad, G., Gulati, B.R., Bhilegaonkar, K.N., and Pandey, A.B., 2012. Frequency of group A rotavirus with mixed G and P genotypes in bovines: predominance of G3 genotype and its emergence in combination with G8/G10 types. Journal of Veterinary Science, 13, 271-278CrossRefPubMedPubMedCentralGoogle Scholar
  29. Martella, V., Ciarlet, M., Banyai, K., Lorusso, E., Cavalli, A., Corrente, M., Elia, G., Arista, S., Camero, M., Desario, C., Decaro, N., Lavazza, A., and Buonavoglia, C., 2006. Identification of a novel VP4 genotype carried by a serotype G5 porcine rotavirus strain. Virology, 346, 301-311CrossRefPubMedGoogle Scholar
  30. Martella, V., Banyai, K., Matthijnssens, J., Buonavoglia, C., and Ciarlet, M., 2010. Zoonotic aspects of rotaviruses. Veterinary Microbiology, 140, 246-255CrossRefPubMedGoogle Scholar
  31. Matsuda, Y., Isegawa, Y., Woode, G.N., Zheng, S., Kaga, E., Nakagomi, T., Ueda, S., and Nakagomi, O., 1993. Two-way cross-neutralization mediated by a shared P (VP4) serotype between bovine rotavirus strains with distinct G (VP7) serotypes. Journal of Clinical Microbiology, 31, 354-358PubMedPubMedCentralGoogle Scholar
  32. Matthijnssens, J., Bilcke, J., Ciarlet, M., Martella, V., Banyai, K., Rahman, M., Zeller, M., Beutels, P., Van Damme, P., and Van Ranst, M., 2009. Rotavirus disease and vaccination: impact on genotype diversity. Future Microbiology, 4, 1303-1316Google Scholar
  33. Matthijnssens, J., Otto, P.H., Ciarlet, M., Desselberger, U., Van Ranst, M., and Johne, R., 2012. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Archives of Virology, 157, 1177-1182CrossRefPubMedGoogle Scholar
  34. Medeiros, T.N.S., Lorenzetti, E., Alfieri, A.F., and Alfieri, A.A., 2015. Phylogenetic analysis of a G6P[5] bovine rotavirus strain isolated in a neonatal diarrhea outbreak in a beef cattle herd vaccinated with G6P[1] and G10P[11] genotypes. Archives of Virology, 160, 447-451CrossRefGoogle Scholar
  35. Meganck, V., Hoflack, G., Piepers, S., and Opsomer, G., 2015. Evaluation of a protocol to reduce the incidence of neonatal calf diarrhoea on dairy herds. Preventive Veterinary Medicine, 118, 64-70CrossRefGoogle Scholar
  36. Mihalov-Kovacs, E., Gellert, A., Marton, S., Farkas, S.L., Feher, E., Oldal, M., Jakab, F., Martella, V., and Banyai, K., 2015. Candidate new rotavirus species in sheltered dogs, Hungary. Emerging Infectious Diseases Journal, 21, 660-663CrossRefGoogle Scholar
  37. Otto, P.H., Rosenhain, S., Elschner, M.C., Hotzel, H., Machnowska, P., Trojnar, E., Hoffmann, K., and Johne, R., 2015. Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains. Veterinary Microbiology, 179, 168-176CrossRefGoogle Scholar
  38. Papp, H., Laszlo, B., Jakab, F., Ganesh, B., De Grazia, S., Matthijnssens, J., Ciarlet, M., Martella, V., and Banyai, K., 2013. Review of group A rotavirus strains reported in swine and cattle. Veterinary Microbiology, 165, 190-199CrossRefGoogle Scholar
  39. Parreno, V., Bejar, C., Vagnozzi, A., Barrandeguy, M., Costantini, V., Craig, M.I., Yuan, L., Hodgins, D., Saif, L., and Fernandez, F., 2004. Modulation by colostrum-acquired maternal antibodies of systemic and mucosal antibody responses to rotavirus in calves experimentally challenged with bovine rotavirus. Veterinary Immunology and Immunopathology, 100, 7-24CrossRefGoogle Scholar
  40. RCWG, 2017. Rotavirus Classification Working Group. Newly assigned genotypes - June 30th 2017.Google Scholar
  41. Rocha, T.G., Silva, F.D., Gregori, F., Alfieri, A.A., Buzinaro, M.D., and Fagliari, J.J., 2017. Longitudinal study of bovine rotavirus group A in newborn calves from vaccinated and unvaccinated dairy herds. Tropical Animal Health and Production, 49, 783-790CrossRefPubMedGoogle Scholar
  42. Snodgrass, D.R., Terzolo, H.R., Sherwood, D., Campbell, I., Menzies, J.D., and Synge, B.A., 1986. Aetiology of diarrhoea in young calves. Veterinary Record, 119, 31-34Google Scholar
  43. Swiatek, D.L., Palombo, E.A., Lee, A., Coventry, M.J., Britz, M.L., and Kirkwood, C.D., 2010. Detection and analysis of bovine rotavirus strains circulating in Australian calves during 2004 and 2005. Veterinary Microbiology, 140, 56-62CrossRefPubMedGoogle Scholar
  44. Taniguchi, K., Urasawa, T., Kobayashi, N., Ahmed, M.U., Adachi, N., Chiba, S., and Urasawa, S., 1991. Antibody response to serotype-specific and cross-reactive neutralization epitopes on VP4 and VP7 after rotavirus infection or vaccination. Journal of Clinical Microbiology, 29, 483-487PubMedPubMedCentralGoogle Scholar
  45. Usonis, V., Ivaskeviciene, I., Desselberger, U., Rodrigo, C., and Pediatric, R.E.C., 2012. The unpredictable diversity of co-circulating rotavirus types in Europe and the possible impact of universal mass vaccination programmes on rotavirus genotype incidence. Vaccine, 30, 4596-4605CrossRefPubMedGoogle Scholar
  46. Van Zaane, D., Ijzerman, J., and De Leeuw, P.W., 1986. Intestinal antibody response after vaccination and infection with rotavirus of calves fed colostrum with or without rotavirus antibody. Veterinary Immunology and Immunopathology, 11, 45-63CrossRefPubMedGoogle Scholar
  47. Windeyer, M.C., Leslie, K.E., Godden, S.M., Hodgins, D.C., Lissemore, K.D., and LeBlanc, S.J., 2014. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Preventive Veterinary Medicine, 113, 231-240CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratory of Animal Virology, Department of Veterinary Preventive MedicineUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.MSD Animal HealthSão PauloBrazil
  3. 3.Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive MedicineUniversidade Estadual de LondrinaLondrinaBrazil
  4. 4.National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE)Universidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations