Tropical Animal Health and Production

, Volume 51, Issue 4, pp 781–789 | Cite as

Periodic vicissitudes of different concentrations of a developed prototype killed S. aureus mastitis vaccine on immune modulators, mediators and immunoglobulins in cows

  • Idris Umar HambaliEmail author
  • Faez Firdaus Jesse Bin AbdullahEmail author
  • K. R. Bhutto
  • M. L. Mohd Azmi
  • A. H. Wahid
  • Z. Zakaria
  • M. N. Odhah
  • M. Arsalan
  • N. A. Muhammad
  • M. N. Jefri
Regular Articles


Mastitis is the inflammation of the mammary gland due to microbial infiltration causing a reduced mammary function. This study aims at developing a vaccine using Malaysian local isolate of Staphylococcus aureus and evaluating serum amyloid A, Interleukin-10, IgM and IgG responses periodically. Four bacterin concentrations (106, 107, 108 and 109 cfu/ml of the local isolate of S. aureus) were adjuvanted with aluminium potassium sulphate. Thirty cows grouped into 4 treatment groups (G-) were vaccinated (2 ml) intramuscularly, with a fifth G-A as control. The mean concentration (MC) of serum amyloid A (SAA) was significantly different (sig-d) (p ˂ 0.05) in G-D at 0 h post vaccination (PV), 3 h PV, 24 h PV, weeks 1, 2, 3 and 4 PV (6-, 15-, 5-, 12-, 11-, 4- and 11-fold increased (FI) respectively). The MC of serum amyloid A was also sig-d in G-E at 0 h PV, weeks 1, 2 and 4 PV (3, 8, 5 and 8 FI respectively). The MC of IL-10 was sig-d in G-D and C at 3 h PV and week 2 PV (5 and 2 FI respectively). The IgM MC was sig-d in G-B and C at 3 h PV (5 and 6 FI respectively), at 24 h PV (5 and 9 FI respectively), at week 3 PV(2 and 2 FI respectively) and week 4 PV (3 and 4 FI respectively). The MC of IgG was sig-d in G-E at 0 h, 3 h and week 3 PV(5, 6 and 2 FI respectively) and in G-D at weeks 1–4 (3, 3, 3 and 5 FI respectively). In conclusion, elevated levels of SAA, IgG and IL-10 in G-D(108) informed our choice of best dosage which can be used to evoke immunity in cows.


Mastitis S. aureus Vaccine APP Antibody Cytokine 



The authors wish to appreciate the management and staff of the Department of Clinical studies, Faculty of Veterinary Medicine, University Putra Malaysia (UPM) for their cooperation throughout the duration of the experimental trial.

Funding statement

The publication of this article was funded by Universiti Putra Malaysia and the grant number to this research is 9490500.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The ethical approval for this vaccine trial was issued by the Institutional Animal Care and use committee (IACUC) of the Universiti Putra Malaysia referenced as UPM/IACUC/AUP- R072/2016.


  1. Abdullah, F. F. J., Mohammed, K., Abba, Y., Adamu, L., Osman, A. Y., Tijjani, A., Saharee, A. A., & Haron, A. W. (2014). Retained placenta associated with Escherichia coli infection in a dairy cow. International Journal of Livestock Research, 4(2), 120–125.CrossRefGoogle Scholar
  2. Ali, O. S., Adamu, L., Abdullah, F. F. J., Ilyasu, Y., Abba, Y., Hamzah, H. B., Mohd-Azmi, M., Haron, A. W. B., & Saad, M. Z. B. (2015). Alterations in interleukin-1 [Beta] and interleukin-6 in mice inoculated through the oral routes using graded doses of P. multocida Type b: 2 and its Lipopolysaccharide. American Journal of Animal and Veterinary Sciences, 10(1), 1.Google Scholar
  3. Armstrong, L., Jordan, N., & Millar, A. (1996). Interleukin 10 (IL-10) regulation of tumour necrosis factor alpha (TNF-alpha) from human alveolar macrophages and peripheral blood monocytes. Thorax, 51(2), 143–149.CrossRefGoogle Scholar
  4. Bannerman, D. D., Paape, M. J., Lee, J.-W., Zhao, X., Hope, J. C., & Rainard, P. (2004). Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clinical and diagnostic laboratory immunology, 11(3), 463–472.Google Scholar
  5. Barrio, M., Rainard, P., Gilbert, F., & Poutrel, B. (2003). Assessment of the opsonic activity of purified bovine sIgA following intramammary immunization of cows with Staphylococcus aureus. Journal of Dairy Science, 86(9), 2884–2894.CrossRefGoogle Scholar
  6. Bharathan, M., & Mullarky, I. K. (2011). Targeting mucosal immunity in the battle to develop a mastitis vaccine. J Mammary Gland Biol Neoplasia, 16(4), 409–419. CrossRefGoogle Scholar
  7. Boerhout, E., Vrieling, M., Benedictus, L., Daemen, I., Ravesloot, L., Rutten, V., Nuijten, P., Van Strijp, J., Koets, A., & Eisenberg, S. (2015). Immunization routes in cattle impact the levels and neutralizing capacity of antibodies induced against S. aureus immune evasion proteins. Veterinary research, 46(1), 115.CrossRefGoogle Scholar
  8. Camussone, C. M., Veaute, C. M., Pujato, N., Morein, B., Marcipar, I. S., & Calvinho, L. F. (2014). Immune response of heifers against a Staphylococcus aureus CP5 whole cell and lysate vaccine formulated with ISCOM Matrix adjuvant. Res Vet Sci, 96(1), 86–94. CrossRefGoogle Scholar
  9. Chang, B. S., Bohach, G. A., Lee, S.-U., Davis, W. C., Fox, L. K., Ferens, W. A., Seo, K. S., Koo, H. C., Kwon, N. H., & Park, Y. H. (2005). Immunosuppression by T regulatory cells in cows infected with Staphylococcal superantigen. Journal of Veterinary Science, 6(3).Google Scholar
  10. Chung, E. L. T., Abdullah, F. F. J., Adamu, L., Marza, A. D., Ibrahim, H. H., Zamri-Saad, M., Haron, A. W., Saharee, A. A., Lila, M. A. M., & Omar, A. R. (2015). Clinico-pathology, hematology, and biochemistry responses toward Pasteurella multocida Type B: 2 via oral and subcutaneous route of infections. Veterinary world, 8(6), 783.CrossRefGoogle Scholar
  11. Colque-Navarro, P., Palma, M., Söderquist, B., Flock, J.-I., & Möllby, R. (2000). Antibody responses in patients with staphylococcal septicemia against two Staphylococcus aureus fibrinogen binding proteins: clumping factor and an extracellular fibrinogen binding protein. Clinical and diagnostic laboratory immunology, 7(1), 14–20.Google Scholar
  12. Ezzat Alnakip, M., Quintela-Baluja, M., Böhme, K., Fernández-No, I., Caamaño-Antelo, S., Calo-Mata, P., & Barros-Velázquez, J. (2014). The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. Journal of veterinary medicine, 2014.Google Scholar
  13. Gerardi, G., Bernardini, D., Elia, C. A., Ferrari, V., Iob, L., & Segato, S. (2009). Use of serum amyloid A and milk amyloid A in the diagnosis of subclinical mastitis in dairy cows. Journal of dairy research, 76(4), 411–417.CrossRefGoogle Scholar
  14. Gill, J., Pacan, J., Carson, M., Leslie, K., Griffiths, M., & Sabour, P. (2006). Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrobial agents and chemotherapy, 50(9), 2912–2918.CrossRefGoogle Scholar
  15. Grönlund, U., Hultén, C., Eckersall, P. D., Hogarth, C., & Waller, K. P. (2003). Haptoglobin and serum amyloid A in milk and serum during acute and chronic experimentally induced Staphylococcus aureus mastitis. Journal of dairy research, 70(4), 379–386.CrossRefGoogle Scholar
  16. Hambali, I., Bhutto, K., Jesse, F., Lawan, A., Odhah, M., Wahid, A., Azmi, M. M., Zakaria, Z., Arsalan, M., & Muhammad, N. (2018). Clinical responses in cows vaccinated with a developed prototype killed Staphylococcus aureus mastitis vaccine. Microbial pathogenesis.Google Scholar
  17. Haron, A. W., Abdullah, F. F. J., Tijjani, A., Abba, Y., Adamu, L., Mohammed, K., Amir, A. M. M., Sadiq, M. A., & Lila, M. A. M. (2014). The use of Na+ and K+ ion concentrations as potential diagnostic indicators of subclinical mastitis in dairy cows. Veterinary world, 7(11).Google Scholar
  18. Heegaard, P. M., Godson, D. L., Toussaint, M. J., Tjørnehøj, K., Larsen, L. E., Viuff, B., & Rønsholt, L. (2000). The acute phase response of haptoglobin and serum amyloid A (SAA) in cattle undergoing experimental infection with bovine respiratory syncytial virus. Veterinary immunology and immunopathology, 77(1), 151–159.CrossRefGoogle Scholar
  19. Herr, M., Bostedt, H., & Failing, K. (2011). IgG and IgM levels in dairy cows during the periparturient period. Theriogenology, 75(2), 377–385.CrossRefGoogle Scholar
  20. Hessle, C., Andersson, B., & Wold, A. E. (2000). Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria preferentially stimulate IL-10 production. Infection and immunity, 68(6), 3581–3586.CrossRefGoogle Scholar
  21. Hogan, J., & Smith, K. L. (2003). Coliform mastitis. Veterinary research, 34(5), 507–519.CrossRefGoogle Scholar
  22. Jacobsen, S., Niewold, T. A., Kornalijnslijper, E., Toussaint, M., & Gruys, E. (2005). Kinetics of local and systemic isoforms of serum amyloid A in bovine mastitic milk. Veterinary immunology and immunopathology, 104(1), 21–31.CrossRefGoogle Scholar
  23. Jesse. (2014). Clinical mastitis associated with Arcanobacterium spp. infection in a Boer cross Goat. J. Vet. Adv, 4(2), 405–408.Google Scholar
  24. Jesse, F. F. A., Abba, Y., Tijjani, A., Sadiq, M. A., Konto, M., Adamu, L., Wahid, A. H., MohdAzmi, M. L., Eric, L. T. C., & Ab Rahman, M. F. (2016a). Gonado-hypophyseal lesions and reproductive hormonal changes in Brucella melitensis-infected mice and its lipopolysaccharides (LPSs). Comparative Clinical Pathology, 25(1), 31–36.CrossRefGoogle Scholar
  25. Jesse, F. F. A., Bitrus, A. A., Abba, Y., Sadiq, M. A., Chung, E. L. T., Hambali, I. U., Lila, M. A. M., & Haron, A. W. (2016b). Severe case of bilateral gangrenous mastitis in a doe: a case report on clinical management. Int. J. Livest. Res, 6(8), 55–59.CrossRefGoogle Scholar
  26. Jesse, F. F. A., Ibrahim, H. H., Abba, Y., Chung, E. L. T., Marza, A. D., Mazlan, M., Zamri-Saad, M., Omar, A. R., Zakaria, M. Z. A. B., & Saharee, A. A. (2017). Reproductive hormonal variations and adenohypophyseal lesions in pre-pubertal buffalo heifers inoculated with Pasteurella multocida type B: 2 and its immunogens. BMC veterinary research, 13(1), 88.CrossRefGoogle Scholar
  27. Johnson, T. R., & Case, C. L. (2015). Laboratory experiments in microbiology: Pearson.Google Scholar
  28. Kamphuis, C., Dela Rue, B. T., & Eastwood, C. R. (2016). Field validation of protocols developed to evaluate in-line mastitis detection systems. J Dairy Sci, 99(2), 1619–1631. CrossRefGoogle Scholar
  29. Kociņa, I., Antāne, V., & Lūsis, I. (2012). The concentration of immunoglobulins A, G, and M in cow milk and blood in relation with cow seasonal keeping and pathogens presence in the udder. Proceedings of the Latvia University of Agriculture, 27(1), 44–53.CrossRefGoogle Scholar
  30. Kovačević-Filipović, M., Ilić, V., Vujčić, Z., Dojnov, B., Stevanov-Pavlović, M., Mijačević, Z., & Božić, T. (2012). Serum amyloid A isoforms in serum and milk from cows with Staphylococcus aureus subclinical mastitis. Veterinary immunology and immunopathology, 145(1), 120–128.CrossRefGoogle Scholar
  31. Lee, J.-W., O’Brien, C. N., Guidry, A. J., Paape, M. J., Shafer-Weaver, K. A., & Zhao, X. (2005). Effect of a trivalent vaccine against Staphylococcus aureus mastitis lymphocyte subpopulations, antibody production, and neutrophil phagocytosis, Canadian journal of veterinary research, 69(1), 11.Google Scholar
  32. Leitner, G., Yadlin, B., Glickman, A., Chaffer, M., & Saran, A. (2000). Systemic and local immune response of cows to intramammary infection with Staphylococcus aureus. Research in Veterinary Science, 69(2), 181–184.CrossRefGoogle Scholar
  33. Marimuthu M, Abdullah, F. F. J., Mohammed, K., Poshpum, S. S., Adamu, L., Osman, A. Y., Osman, A. Y., Abba, Y., Tijjani, A., Marimuthu, M., Abdullah, F. F. J., Mohammed, K., Adamu, L., Abba, Y., & Tijjani, A. (2014a). Prevalence and antimicrobial resistance assessment of subclinical mastitis in milk samples from selected dairy farms. Am. J. Anim. Vet. Sci. American Journal of Animal and Veterinary Sciences, 9(1), 65–70.CrossRefGoogle Scholar
  34. Marimuthu, M., Abdullah, F. F. J., Mohammed, K., Sangeetha, D., Poshpum, O. S., Adamu, L., Osman, A. Y., Abba, Y., & Tijjani, A. (2014b). Prevalence and antimicrobial resistance assessment of subclinical mastitis in milk samples from selected dairy farms. American Journal of Animal and Veterinary Sciences, 9(1), 65.CrossRefGoogle Scholar
  35. Marza, A. D., Abdullah, F. F. J., Ahmed, I. M., Chung, E. L. T., Ibrahim, H. H., Zamri-Saad, M., Omar, A. R., Bakar, M. Z. A., Saharee, A. A., & Haron, A. W. (2015). Involvement of nervous system in cattle and buffaloes due to Pasteurella multocida B: 2 infection: A review of clinicopathological and pathophysiological changes. Journal of Advanced Veterinary and Animal Research, 2(3), 252–262.CrossRefGoogle Scholar
  36. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V., & Roumenina, L. T. (2015). Complement system part I–molecular mechanisms of activation and regulation. Frontiers in immunology, 6.Google Scholar
  37. Mohi-ud-din, M., Mudasser, H., Zahid, I., & Iftikhar, H. (2014). Immune response of rabbits to hemorrhagic septicemia vaccine formulations adjuvanted with montanide ISA-206, paraffin oil and alum. Asian J Agri Biol, 2(2), 161–167.Google Scholar
  38. Morris, D. G., Waters, S. M., McCarthy, S. D., Patton, J., Earley, B., Fitzpatrick, R., Murphy, J. J., Diskin, M. G., Kenny, D. A., Brass, A., & Wathes, D. C. (2009). Pleiotropic effects of negative energy balance in the postpartum dairy cow on splenic gene expression: repercussions for innate and adaptive immunity. Physiol Genomics, 39(1), 28–37. CrossRefGoogle Scholar
  39. Othman, N., & Bahaman, A. R. (2005). Prevalence of subclinical mastitis and antibiotic resistant bacteria in three selected cattle farms in Serdang, Selangor and Kluang, Johor. Jurnal Veterinar Malaysia, 17(1), 27–31.Google Scholar
  40. Pareek, R., Wellnitz, O., Van Dorp, R., Burton, J., & Kerr, D. (2005). Immunorelevant gene expression in LPS-challenged bovine mammary epithelial cells. J Appl Genet, 46(2), 171–177.Google Scholar
  41. Paulrud, C. O. (2005). Basic concepts of the bovine teat canal. Vet Res Commun, 29(3), 215–245.CrossRefGoogle Scholar
  42. Riollet, C., Rainard, P., & Poutrel, B. (2000). Cells and cytokines in inflammatory secretions of bovine mammary gland. Adv Exp Med Biol, 480, 247–258. CrossRefGoogle Scholar
  43. Roslindawani, M., Syafiqah, A., Jesse, F., Effendy, A., & Zamri-Saad, M. (2016). Recombinant caseous lymphadenitis vaccine with palm oil as adjuvant enhances the humoral and cell-mediated immune responses in rat model. J Anim Heal Prod, 4, 23.Google Scholar
  44. Sampimon, O., Zadoks, R. N., De Vliegher, S., Supré, K., Haesebrouck, F., Barkema, H., Sol, J., & Lam, T. J. (2009). Performance of API Staph ID 32 and Staph-Zym for identification of coagulase-negative staphylococci isolated from bovine milk samples. Veterinary microbiology, 136(3), 300–305.CrossRefGoogle Scholar
  45. Santman-Berends, I. M., Swinkels, J. M., Lam, T. J., Keurentjes, J., & van Schaik, G. (2016). Evaluation of udder health parameters and risk factors for clinical mastitis in Dutch dairy herds in the context of a restricted antimicrobial usage policy. J Dairy Sci, 99(4), 2930–2939. CrossRefGoogle Scholar
  46. Shamila-Syuhada, A. K., Rusul, G., Wan-Nadiah, W. A., & Chuah, L.-O. (2016). Prevalence and antibiotics resistance of Staphylococcus aureus isolates isolated from raw milk obtained from small-scale dairy farms in Penang, Malaysia. Pakistan Veterinary J, 36(1), 98–102.Google Scholar
  47. Shitandi, A., & Kihumbu, G. (2004). Assessment of the California mastitis test usage in smallholder dairy herds and risk of violative antimicrobial residues. Journal of Veterinary Science, 5(1), 5–9.CrossRefGoogle Scholar
  48. Shkreta, L., Talbot, B. G., Diarra, M. S., & Lacasse, P. (2004). Immune responses to a DNA/protein vaccination strategy against Staphylococcus aureus induced mastitis in dairy cows. Vaccine, 23(1), 114–126.CrossRefGoogle Scholar
  49. Siti Zubaidah, R., Mohd Shah, A., Fatimah, C., Rosnani, A., Hajaraih, S., Iskandar, C., Hassan, L., Dhaliwal, G., Yusoff, R., & Omar, A. (2005). Prevalence and aetiology of subclinical caprine mastitis in five selected farms in Selangor. Paper presented at the Harmonising HALAL practices and food safety from farm to table. Proceedings of the 17th Veterinary Association Malaysia Congress in conjuction with Malaysia International Halal Showcase (MIHAS) 2005; 27–30 July 2005.Google Scholar
  50. Sordillo, & Streicher. (2002). Mammary gland immunity and mastitis susceptibility. Journal of mammary gland biology and neoplasia, 7(2), 135–146.CrossRefGoogle Scholar
  51. Waller, K. P., Persson, Y., Nyman, A.-K., & Stengärde, L. (2014). Udder health in beef cows and its association with calf growth. Acta Veterinaria Scandinavica, 56(1), 1.CrossRefGoogle Scholar
  52. Wang, H., Yu, G., Yu, H., Gu, M., Zhang, J., Meng, X., Liu, Z., Qiu, C., & Li, J. (2015). Characterization of TLR2, NOD2, and related cytokines in mammary glands infected by Staphylococcus aureus in a rat model. Acta Veterinaria Scandinavica, 57(1), 25.CrossRefGoogle Scholar
  53. Yoshida, K. 1980.Vaccine (Google Patents.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Veterinary Clinical Studies, Faculty of Veterinary MedicineUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Veterinary Public health and Preventive MedicineUniversity of MaiduguriMaiduguriNigeria
  3. 3.Research Centre for Ruminant DiseaseUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Institute of Tropical Agriculture and Food SecurityUniversiti Putra MalaysiaSerdangMalaysia
  5. 5.Directorate of Veterinary Research and Diagnosis, Livestock and Fisheries DepartmentSindhPakistan
  6. 6.Department of Veterinary Pathology and Microbiology, Faculty of Veterinary MedicineUniversiti Putra MalaysiaSerdangMalaysia
  7. 7.Department of Veterinary Medicine, Faculty of Agriculture and Veterinary MedicineThamar UniversityDhamarYemen
  8. 8.Directorate of Animal Health, Livestock and Dairy Development Department BaluchistanLahorePakistan
  9. 9.Department of Clinical Medicine and SurgeryUniversity of Veterinary and Animal Science LahoreLahorePakistan

Personalised recommendations