Tropical Animal Health and Production

, Volume 51, Issue 4, pp 987–992 | Cite as

Antimicrobial susceptibility and molecular typing of Pasteurella multocida isolated from six provinces in China

  • Ling-Cong Kong
  • Zi Wang
  • Yi-Ming Wang
  • Wen-Long Dong
  • Bo-Yan Jia
  • Duo Gao
  • Xiu-Yun JiangEmail author
  • Hong-Xia MaEmail author
Short Communications


Pasteurella multocida (P. multocida) is an important pathogen that causes bovine respiratory disease (BRD) in China and other countries. To investigate the antimicrobial susceptibility of P. multocida isolated from different provinces in China, we analyzed antimicrobial susceptibility phenotypes and pulsed-field gel electrophoresis (PFGE) types of P. multocida; then, we sequenced the complete genome of strain found to be multidrug-resistant. The isolates exhibited resistance to many antimicrobial agents, especially amikacin, sulfamethoxazole, sulfachloropyridazinesodium, macrolides, and fluoroquinolones. Pulsed-field gel electrophoresis analysis showed that a clonal spread of multidrug-resistant isolates occurred in various provinces. All of the isolates carried class I integron.


Minimal inhibitory concentration Pasteurella multocida Molecular typing 



We thank Ying Zhang, Lei Liu, and Ren-ge Hu for their laboratory contributions.

Funding information

This research was funded by the National Key Research and Development Plan (grant number: 2016YFD0501301), the National Natural Science Foundation of China (grant number: 31702293), the Science and Technology Development Plan of Jilin Province (grant number: 20170520074JH), Jilin Provincial Education Department “the 13th five-year” Science and Technology Project (grant number: JJKH20180696KJ), and the Jilin Agricultural University Research Foundation (grant number: 201702).

Compliance with ethical standards

Statement of animal rights

This study was carried out in accordance with the recommendations of ‘Laboratory animal-Guideline for ethical review of animal welfare (GB/T 35892-2018), General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China’. The protocol was approved by the Animal Care and Use Committee of the Jilin Agricultural University.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Clinical and Laboratory Standards Institute, 2013. Performance standards for antimicrobial disk dilution susceptibility tests for bacteria isolated from animals.approved standard. 4th ed, Wayne, PA: CLSI. CLSI Document VET01-A4.Google Scholar
  2. Ewers, C., Lübke-Becker, A., Bethe, A., Kiebling, S., Filter, M. and Wieler, L.H., 2006 Virulence genotype of Pasteurella multocida strains isolated from different hosts with various disease status, Veterinary microbiology, 114, 304–317.CrossRefGoogle Scholar
  3. Ferreira, T.S., Felizardo, M.R., de Gobbi, D.D., Moreno, M. and Moreno, A.M., 2015. Antimicrobial resistance and virulence gene profiles in P. multocidastrains isolated from cats, Brazilian journal of microbiology, 46, 271–277.CrossRefGoogle Scholar
  4. Hendriksen, R.S., Mevius, D.J., Schroeter, A., Teale, C., Meunier, D., Butaye, P., Franco, A., Utinane, A., Amado, A., Moreno, M., Greko, C., Stärk, K., Berghold, C., Myllyniemi, A.L., Wasyl, D., Sunde, M. and Aarestrup, F.M., 2008. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002-2004, Acta veterinaria scandinavica, 50, 28.CrossRefGoogle Scholar
  5. Jamali, H., Rezagholipour, M., Fallah, S., Dadrasnia, A., Chelliah, S., Velappan, R.D., Wei, K.S., and Ismail, S., 2014. Prevalence, characterization and antibiotic resistance of Pasteurella multocida isolated from bovine respiratory infection, veterinaria Journal, 202, 381–383.Google Scholar
  6. Katsuda, K., Kohmoto, M., Mikami, O., Uchida, I., 2009. Antimicrobial resistance and genetic characterization of fluoroquinolone-resistant Mannheimia haemolytica isolates from cattle with bovine pneumonia, Veterinary microbiology, 139, 74–79.CrossRefGoogle Scholar
  7. Katsuda, K., Hoshinoo, K., Ueno, Y., Kohmoto, M., and Mikami, O., 2013. Virulence genes and antimicrobial susceptibility in Pasteurella multocida isolates from calves. Veterinary microbiology, 167, 737–741.CrossRefGoogle Scholar
  8. Kehrenberg, C., Schwarz, S., 2005. Plasmid-borne florfenicol resistance in Pasteurella multocida, Journal of antimicrobial chemotherapy, 55, 773–775.CrossRefGoogle Scholar
  9. Kehrenberg, C., Schwarz, S., 2007. Mutations in 16S rRNA and ribosomal protein S5 associated with high-level spectinomycin resistance in Pasteurella multocida. Antimicrob. Journal of antimicrobial chemotherapy, 51, 2244–2246.CrossRefGoogle Scholar
  10. Kong, L.C., Gao, D., Gao, Y.H., Liu, S.M., and Ma, H.X., 2014. Fluoroquinolone resistance mechanism of clinical isolates and selected mutants of Pasteurella multocida from bovine respiratory disease in China, Journal of veterinary medical science, 76, 1655–1657.CrossRefGoogle Scholar
  11. Magstadt, D.R., Schuler, A.M., Coetzee, J.F., Krull, A.C.1., O’Connor, A.M., Cooper, V.L., and Engelken, T.J., 2018. Treatment history and antimicrobial susceptibility results for Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolates from bovine respiratory disease cases submitted to the Iowa State University Veterinary Diagnostic Laboratory from 2013 to 2015, Journal of veterinary diagnostic investigation, 30, 99–104.Google Scholar
  12. Michael, G.B., Kadlec, K., Sweeney, M.T., Brzuszkiewicz, E., Liesegang, H., Daniel, R., Murray, R.W., Watts, J.L. and Schwarz, S., 2012a. ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: structure and transfer, Journal of antimicrobial chemotherapy, 67, 91–100.CrossRefGoogle Scholar
  13. Michael, G.B., Eidam, C., Kadlec, K., Meyer, K., Sweeney, M.T., Murray, R.W., Watts, J.L. and Schwarz, S., 2012b. Increased MICs of gamithromycin and tildipirosin in the presence of the genes erm (42) and msr (E)-mph (E) for bovine Pasteurella multocida and Mannheimia haemolytica, Journal of antimicrobial chemotherapy, 67, 1555–1557.CrossRefGoogle Scholar
  14. Rímac, R., Luna, L., Hurtado, R., Rosadio, R. and Maturrano, L., 2017. Detection and genetic characterization of Pasteurella multocida from alpaca (vicugna pacos) pneumonia cases, Tropical Animal Health & Production, 49, 1325–1328.CrossRefGoogle Scholar
  15. Rose, S., Desmolaize, B., Jaju, P., Wilhelm, C., Warrass, R. and Douthwaite, S., 2012. Multiplex PCR To Identify Macrolide Resistance Determinants in Mannheimia haemolytica and Pasteurella multocida. Antimicrob Agents Chemother 56, 3664–3669.CrossRefGoogle Scholar
  16. Sun, N., Liu, J.H., Yang, F., Lin, D.C., Li, G.H., Chen, Z.L. and Zeng, Z.L., 2012. Molecular characterization of the antimicrobial resistance of Riemerella anatipestifer, isolated from ducks, Veterinary microbiology, 158, 376–383.CrossRefGoogle Scholar
  17. Sweeney, M.T., Papich, M.G., Watts, J.L., 2017. New interpretive criteria for danofloxacin antibacterial susceptibility testing against Mannheimia haemolytica and Pasteurella multocida associated with bovine respiratory disease, Journal of veterinary diagnostic investigation, 29, 224–227.CrossRefGoogle Scholar
  18. Tang, X., Zhao, Z., Hu, J., Wu, B., Cai, X., He, Q. and Chen, H. 2009. Isolation, Antimicrobial Resistance, and Virulence Genes of Pasteurella multocida Strains from Swine in China, Journal of clinical microbiology, 47, 951–958.CrossRefGoogle Scholar
  19. Tong, P., Sun, Y., Ji, X., Du, X., Guo, X., Liu, J., Zhu, L., Zhou, B., Zhou, W., Liu, G. and Feng, S., 2015. Characterization of antimicrobial resistance and extended-spectrum β-lactamase genes in Escherichia coli isolated from chickens, Foodborne Pathogens and Disease, 12, 345–52.CrossRefGoogle Scholar
  20. Townsend, K.M., Frost, A.J., Lee, C.W., Papadimitriou, J.M. and Dawkins, H.J., 1998. Development of PCR assays for species-and type-specific identification of Pasteurella multocida isolates, Journal of clinical microbiology, 36, 1096–1100.Google Scholar
  21. Van Engen, N.K., Stock, M.L., Engelken, T., Vann, R.C., Wulf, L.W., Karriker, L.A., Busby, W.D., Lakritz, J., Carpenter, A.J., Bradford, B.J., Hsu, W.H., Wang, C. and Coetzee, J.F., 2014. Impact of oral meloxicam on circulating physiological biomarkers of stress and inflammation in beef steers after long-distance transportation, Journal of animal science, 92, 498–510.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Ling-Cong Kong
    • 1
    • 2
  • Zi Wang
    • 1
  • Yi-Ming Wang
    • 1
  • Wen-Long Dong
    • 1
  • Bo-Yan Jia
    • 1
  • Duo Gao
    • 3
  • Xiu-Yun Jiang
    • 1
    Email author
  • Hong-Xia Ma
    • 1
    • 2
    Email author
  1. 1.Department of Basic Veterinary Medicine, College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
  2. 2.The Key Laboratory of Animal Production, Product Quality and Security, Ministry of EducationJilinChina
  3. 3.Liaoning Testing and Inspection Center for Quality & Safety of Veterinary Drugs, Feed and Livestock ProductsShenyangChina

Personalised recommendations