Advertisement

Tropical Animal Health and Production

, Volume 50, Issue 1, pp 187–195 | Cite as

A genomic study on mammary gland acclimatization to tropical environment in the Holstein cattle

  • D. Wetzel-Gastal
  • F. Feitor
  • S. van Harten
  • M. Sebastiana
  • L. M. R. Sousa
  • L. A. CardosoEmail author
Regular Articles
  • 197 Downloads

Abstract

This study aims at identifying mammary gland genes expressed in Brazilian Holstein cattle produced under tropical conditions, as compared to the Portuguese Holstein cattle produced in a temperate region. For this purpose, cDNA microarrays and real-time (RT) PCR transcriptomic techniques were utilized in 12 Holstein cows from the same lactating phase and management systems divided into two groups: Holstein Brazil (HB) originated from Brazil and Holstein Portugal (HP) from Portugal. The genomic results show that from a total of 4608 genes available from the microarray slide (Bovine Long Oligo (BLO) library), 65 transcripts were identified as differentially expressed in mammary glands. The genes associated with mammary gland development and heat stress responses showed greater expression in HB animals. In the HP group, upregulated genes related with apoptosis and vascular development and downregulated genes related with resistance to heat stress were observed. Validation of microarray results was done using RT-PCR. HB animals had higher blood levels of growth hormone than HP animals. Blood levels of prolactin and T3 were similar for both groups and GH levels were increased in the HB group. The results suggest a gene change towards long-term acclimatization of Brazilian Holstein cattle to cope with tropical heat stress conditions.

Keywords

Heat stress acclimatization Mammary gland 

Notes

Acknowledgements

We are grateful for the support of Faculdade de Ciências da Universidade de Lisboa and CENARGEM, EMBRAPA, Brazil.

Funding information

This work was supported by the grant “SFRH/BD/48549/2008” from Fundação para a Ciência e Tecnologia (FCT), Portugal, of CIISA (Centro Interdisciplinar de Investigação em Sanidade Animal) and the Faculty of Veterinary Medicine, University of Lisbon.

Compliance with ethical standards

Statement on animal rights

Ethical approval for the sample collection from animals was granted by the Faculty of Veterinary Medicine of the University of Lisbon and by the Agriculture Ministry Ethical Committee (Portugal). Sampling of animals was carried out by trained veterinarians.

References

  1. Akers, R.M., 2006. Major Advances Associated with Hormone and Growth Factor Regulation of Mammary Growth and Lactation in Dairy Cows. Journal Dairy Science. 89, 1222–1234.CrossRefGoogle Scholar
  2. Associação Brasileira de Criadores de Bovinos de raça Holandesa. http://www.gadoholandes.com.br . Accessed on 23/10/2015.
  3. Associação Portuguesa de Produtores de raça Frízia. http://www.apcrf.pt. Acessed on 20/10/2015.
  4. BLO microarray EST database. http://nbfgc.msu.edu. Accessed on 18/08/2014.
  5. Bionaz, M. & Loor, J.J., 2007. Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol. Genomics 29, 312–319CrossRefGoogle Scholar
  6. Breitling, R. & Herzyk P., 2005. Rank-based methods as a nonparametric alternative of the T-statistic for the analysis of biological microarray data. Journal of Bioinformatics and Computational Biology 3, 1171–1189.CrossRefGoogle Scholar
  7. Cincovic, M.R., Belic, B., Toholj, B., Potkonjak, A., Stevancevic, B., Lako, B. and Radovic, I., 2011. Metabolic acclimation to heat stress in farm housed Holstein cows with different body condition scores. African Journal of Biotechnology 10, 10293–10303.CrossRefGoogle Scholar
  8. Charron M., Shaper J.H. and Shaper N.L., 1998. The increased level of b1,4-galactosylytansferase required for lactose biosynthesis is achieved in part by trnalational control. Proc.Natl. Acad. Sci. 95:1405–14810.CrossRefGoogle Scholar
  9. Chomczynski P and Sacchi N., 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156–159.CrossRefGoogle Scholar
  10. Collier R.J., Stiening C.M., Pollared B.C., VanBaale M.J., Baumgard LH, Gentry P.C., and Caussens P.M., 2006. Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. Journal of Animal Science 84, E1.CrossRefGoogle Scholar
  11. Collier R.J., Collier J.L., Rhoads R.P. , Baumgard L.H., 2008 Invited Review: Genes Involved in the Bovine Heat Stress Response. Journal of Dairy Science. Volume 91, Issue 2, February 2008, Pages 445–454.  https://doi.org/10.3168/jds.2007-0540
  12. Collier R.J., Rungruang S., Zimbleman R.B., Hall L.W., 2012. Metabolic Implications of Heat Stress. Paper presented at the 27th Annual Southwest Nutrition and Management Conference pp 57–64. Tempe, Arizona, USA.Google Scholar
  13. Columbiano V.S., 2007. Identificação de QTL’s nos cromossomas 10, 11 e 12 associados ao stress calórico em bovinos. Thesis Masters Science. University Federal of Viçosa, Viçosa, Minas Gerais, Brazil 60p.Google Scholar
  14. Deb R., Sajjanar B., Pavani K.C., 2015 Bovine heat shock protein 70 and its application in cellular thermo tolerance. J Vet Sci Technol 6(6): 1000e121.CrossRefGoogle Scholar
  15. Dubots E., Audry M., Yamaryo Y., Bastien O., Ohta H., Breton C., Maréchal E., and Block M. A., 2010. Activation of the chloroplast monogalactosyldiacylglycerol synthase, MGD1, by phosphatidic acid and phosphatidyglycerol. The Journal of Biological Chemistry. 285:6003–6011.CrossRefGoogle Scholar
  16. Fabre-Jonca N., Gonin S., Diaz-Latoud C., Rouault J.P. and Arrigo A.P. ,1995. Thermal Sensitivity in NIH 3T3 Fibroblasts Transformed by the v-Fos Oncogene. European Journal of Biochemistry 232, 118–128.CrossRefGoogle Scholar
  17. Figueiredo A., Fortes A, M, Ferreira S; Sebastiana M., Young H. C., Sousa L., Acioli-Santos B., Pessoa F., Verpoorte R., Salome Pais M., (2008) Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. Journal of Experimental Botany 59, 3371–3381.CrossRefGoogle Scholar
  18. geNorm software. CenterForOpenScience@OSFramework . http://medgen.ugert.be/genorm. Accessed on 18/08/2014.
  19. Gene Ontology Consortium. http://www.geneontology.org . Accessed on 18/05/2014.
  20. Igal RA, Wang S, Gonzalez-Baró M, Coleman RA. 2001. Mitochondrial glycerol phosphate acyltransferase directs the incorporation of exogenous fatty acids into triacylglycerol. J Biol Chem. 2001 Nov 9;276(45):42205-12.Google Scholar
  21. Instituto Nacional de Meteorologia do Brazil. http://inmet.gov.br. Acessed on 23/10/2015.
  22. Kaminski S., Ahman A., Ruse A., Wojcik E., Malewskij T., 2004. Milk ProtChip – a microarray of SNP’s in candidate genes associated with milk protein biosynthesis. Journal Applied Genetics 46, 45–58.Google Scholar
  23. Kumar R., Gupta I.D., Verma A., Nishant V., Magotra A., 2015. Molecular characterization and polymorphism detection in HSPB6 gene in Sahiwal cattle. Indian J Anim Res 49(5): 595–598.Google Scholar
  24. Lacerda T.F, Loureiro B., 2015. Selecting thermotolerant animals as a strategy to improve fertility in Holstein cows. Glob. J. Anim. Sci. Res. 2015;3(1):119–127.Google Scholar
  25. Matsuo S.E., Leoni S.G., Colquhoun A. and Kimura E.T., 2006. Transforming growth factor-b1 and activin A generate antiproliferative signaling in thyroid cancer cells. Journal of Endocrinology 190, 141–150.CrossRefGoogle Scholar
  26. Microarray WEB Resource database. http://amadeus.biosc.arizona.edu/bovine. Accessed on 18/10/2014.
  27. Moran John B., 2013. Addressing the Key Constraints to Increasing Milk Production from Small Holder Dairy Farms in Tropical Asia. Inter J Agri Biosci, 2013, 2(3): 90–98.Google Scholar
  28. Nascimento M.R.B.M., Sorti A.A., Guimarães E.C. and Simioni VM., 2013. Thyroid hormone profile of Holstein and Guzerat dairy cattle in a tropical enviromment. Bioscience Journal. 29(1): 179–184.Google Scholar
  29. Niu Y.G, Hauton D, and Evans R.D., 2004. Utililization of Triacylglycerol-rich lipoproteins by the working rat heart: routes of uptake and metabolic fates. The Journal of Physiolog. 558:225–237.CrossRefGoogle Scholar
  30. Norm-Finder. CenterForOpenScience @OSFramework . http://www.mdl.dk/publicationsnormfinder). Acessed on 18/08/2014.
  31. Renaudeau D., Collin A., Yahav S., Basilio V., Gourdine J.L. and Collier R.J., 2012. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6, 707–728.CrossRefGoogle Scholar
  32. Roy R., Ordovas L., Taourit S., Zaragoza P., Eggen A., Rodellar C., 2006. Genomic structure and an alternative transcript of bovine mitochondrial glycerol-3-phosphate acyltransferase gene (GPAM). 2006. Cytogenet Genome Res.;112(1–2):82–9.CrossRefGoogle Scholar
  33. Ramendra D., Ishwar D. G., Archana V., Sohanvir S., Mahesh V.. C., Lalrengpuii S., Nishant V. and Rakesh K.. 2017. Single nucleotide polymorphisms in ATP1A1 gene and their association with thermotolerance traits in Sahiwal and Karan Fries cattle. Indian J. Anim. Res., 51 (1) 2017 : 70–74Google Scholar
  34. Ramendra D., Lalrengpuii S., Nishant V., Pranay B., Jnyanashree S., Imtiwati, and Rakesh K.. 2016. Impact of heat stress on health and performance of dairy animals: A review. Vet World. 2016 Mar; 9(3): 260–268.  https://doi.org/10.14202/vetworld.2016.260-268
  35. Sebastiana M., Figueiredo A. , Acioli-Santos B. , Sousa L., Pessoa F. , Baldé A., Salomé-Pais M., (2009) Identification of plant genes involved on the initial contact between ectomycorrhizal symbionts (Castanea sativa - European chestnut and Pisolithus tinctorius). European Journal of Soil Biology, 45: 275–282.Google Scholar
  36. Singh K., Davis S.R., Dobson J.M., Molenaar A.J., Wheeler T.T., Prosser C.G., Farr V.C., Oden K., Swanson K.M., Phyn C.V.C., Hyndman D.L., Wilson T., Henderson H.V. and Stelwagen K., 2008. cDNA Microarray Analysis Reveals that Antioxidant and Immune Genes Are Upregulated During Involution of the Bovine Mammary Gland. Journal Dairy Science 91, 2236–2246.CrossRefGoogle Scholar
  37. Srikandakumar A., Johnson E.H., 2004. Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian Milking Zebu cows. Trop Anim Health Prod. 2004 Oct;36(7):685–92.Google Scholar
  38. Sternlich M.D., Sunnarborg S.W., Kouros-Mehr H., Yu Y., Lee D.C. and Werb Z., 2005. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 132, 3923–3933.CrossRefGoogle Scholar
  39. Suchyta S.P., Sipkovsky S., Kruska R., Jeffers A., McNulty A., Coussens M.J., Tempelman R.J., Halgren R.G., Saama P.M., Bauman D.E., Boisclair Y.R., Burton J.L., Collier R.J., DePeters E.J., Ferris T.A., Lucy M.C., McGuire M.A., Medrano J.F., Overton T.R., Smith T.P., Smith G.W., Sonstegard T.S., Spain J.N., Spiers D.E., Yao J. and Coussens P.M., 2003b .Development and testing of a high-density cDNA microarray resource for cattle. Physiological Genomics 15, 158–164.CrossRefGoogle Scholar
  40. Suchyta S.P., Sipkovsky S., Halgren R.G., Kruska R., Elftman M., Weber-Nielsen M., Vandehaar M.J, Xiao L., Tempelman R.J. and Coussens P.M. 2003a. Bovine mammary gene expression profiling using a cDNA microarray enhanced for mammary-specific transcripts. Physiological Genomics 16, 8–18.Google Scholar
  41. Tucker H.A., 2000. Symposium: Hormonal regulation of milk synthesis: Hormones, Mammary Growth, and Lactation: a 41-Year Perspective. Journal Dairy Science 83, 874–884.CrossRefGoogle Scholar
  42. Wetzel-Gastal D., Feitor F., Van Harten S., Sebastiana M., Sousa L.M.R. e Cardoso L.A., 2016 . Genomic study of the mammary gland in bovines acclimated to a tropical environment. South African Journal of Animal Science, 46, 1–13CrossRefGoogle Scholar
  43. Zangh L., Levi E., Majumder P., Yu Y., Aboukameel A., Du J., Xu H., Mohammad R., Hatfield J.S., Wali A, Adsay V., Majumdar A.P.N. and Rishi A.K., 2007. Transactivator of transcription–tagged cell cycle and apoptosis regulatory protein-1 peptides suppress the growth of human breast cancer cells in vitro and in vivo. Molecular Cancer Therapeutics 6, 1661–1672.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Interdisciplinary Animal Health Research Centre (CIISA), Faculty of Veterinary MedicineUniversity of LisbonLisbonPortugal
  2. 2.ISA - Institute of AgronomyUniversity of LisbonLisbonPortugal
  3. 3.BIOFIG - Faculty of ScienceUniversity of LisbonLisbonPortugal

Personalised recommendations