Tropical Animal Health and Production

, Volume 50, Issue 1, pp 29–36 | Cite as

Effects of quebracho tannin extract on intake, digestibility, rumen fermentation, and methane production in crossbred heifers fed low-quality tropical grass

  • A. T. Piñeiro-VázquezEmail author
  • G. Jiménez-Ferrer
  • J. A. Alayon-Gamboa
  • A. J. Chay-Canul
  • A. J. Ayala-Burgos
  • C. F. Aguilar-Pérez
  • J. C. Ku-Vera
Regular Articles


The aim of this work was to evaluate the effect of quebracho tannins extract (QTE) on feed intake, dry matter (DM) digestibility, and methane (CH4) emissions in cattle fed low-quality Pennisetum purpureum grass. Five heifers (Bos taurus × Bos indicus) with an average live weight (LW) of 295 ± 19 kg were allotted to five treatments (0, 1, 2, 3, and 4% QTE/kg DM) in a 5 × 5 Latin square design. Intake, digestibility, and total methane emissions (L/day) were recorded for periods of 23 h when cattle were housed in open-circuit respiration chambers. Dry matter intake (DMI), organic matter intake (OMI), dry matter digestibility (DMD), and organic matter digestibility (OMD) were different between treatments with 0 and 4% of QTE/kg DM (P < 0.05). Total volatile fatty acid and the molar proportion of acetate in the rumen was not affected (P < 0.05); however, the molar proportion of propionate increased linearly (P < 0.01) for treatments with 3 and 4% QTE. Total CH4 production decreased linearly (P < 0.01) as QTE increased in the diet, particularly with 3 and 4% concentration. When expressed as DMI and OMI by CH4, production (L/kg) was different between treatments with 0 vs 3 and 4% QTE (P < 0.05). It is concluded that the addition of QTE at 2 or 3% of dry matter ration can decrease methane production up to 29 and 41%, respectively, without significantly compromising feed intake and nutrients digestibility.


Greenhouse gas Secondary compounds Ruminant nutrition 



The senior author is grateful to CONACYT-Mexico for granting a PhD scholarship at the Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida, Mexico.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. AOAC., 1980. Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists. 13th ed. Washington, DC. p. 70.Google Scholar
  2. Archimède, H., Eugène, M., Marie-Magdeleine, C., Boval, M., Martin, C., Morgavi, D.P., Lecomte, P., Doreau, M., 2011. Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology, 166–167, 59–64.CrossRefGoogle Scholar
  3. Attia, M.A., Nour El-Din, M.A., El-Zarkouny, S., El-Shazly, Sallam, A.S., 2013. Effect of quebracho tannins supplementation on nutrients utilization and rumen fermentation characteristics in sheep. Alexandria Journal of Agricultural Research, 2, 165–171.,58,2/2013.58.2.%20165-171.pdf.Google Scholar
  4. Beauchemin, K.A., McGinn, S.M., Martinez, T.F., McAllister, T.A., 2007. Use of condensed tannins extract from quebracho trees to reduce methane emissions from cattle. Journal of Animal Science, 85, 1990–1996.CrossRefGoogle Scholar
  5. Bhatta, R., Enishi, O., Yabumoto, Y., Nonaka, I., Takusari, N., Higuchi, K., Tajima, K., Takenaka, A., Kurihara, M., 2013. Methane reduction and energy partitioning in goats fed two concentrations of tannin from Mimosa spp. Journal of Agriculture Science, 151, 119–128.CrossRefGoogle Scholar
  6. Bodas, R., Prieto, N., García-González, R., Andrés, S., Giráldez, F.J., López, S., 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology, 176, 78–93.CrossRefGoogle Scholar
  7. Bruinenberg, M.H., van der Honing, Y., Agnew, R.E., Yan, T., van Vuuren, A.M., Valk, H., 2002. Energy metabolism of dairy cows fed on grass. Livestock Production Science, 75, 117–128. Scholar
  8. Canul-Solis, J.R., Piñeiro-Vázquez, A.T., Arceo-Castillo, J., Alayón-Gamboa, J.A., Ayala-Burgos, A.J., Aguilar-Pérez, C.F, Solorio-Sánchez, F.J., Castelán-Ortega, O.A., Lachica-López, M., Quintana-Owen, P., Ku-Vera, J.C., 2017. Design and construction of low-cost respiration chambers for ruminal methane measurements in ruminants. Revista Mexicana de Ciencias Pecuarias, 8, 185–191. Scholar
  9. Charmley, E., Williams, S.R.O., Moate, P.J., Hegarty, R.S., Herd, R.M., Oddy, V.E., Reyenga, P., Staunton, K.M., Anderson, A., Hannah, M.C., 2016. A universal equation to predict methane production of forage-fed cattle in Australiad. Animal Production Science, 56, 169–80. Scholar
  10. Cochran, W.G., Cox, G.M., 1991. Diseños Experimentales. 2ª Ed.-México. Trillas. p 661.Google Scholar
  11. Cody, R.P., Smith, J.K., 1991. Analysis of Variance. Chapter 7. In: Applied Statistics and the SAS@ Programming Language 3rd Edition. NJ: Prentice Hall.Google Scholar
  12. Coleman, G.S., 1986. The distribution of carboxy methylcellulase between fractions taken from the rumen of sheep containing no protozoa or one of five different protozoal populations. Journal Agriculture Science, 106, 121–127.CrossRefGoogle Scholar
  13. Dickhoefer, U., Ahnert, S., Susenbeth, A., 2016. Effects of quebracho tannin extract on rumen fermentation and yield and composition of microbial mass in heifers. Journal of Animal Science, 94, 1561–75. Scholar
  14. Dschaak, C.M., Williams, C.M., Holt, M.S., Eun, J.S., Young, A.J., Min, B.R., 2011. Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk production of lactating dairy cows. Journal of Dairy Science, 94, 2508–2519. Scholar
  15. Fagundes, G.M., Modesto, E.C., Fonseca, C.E.M., Lima, H.R.P., Muir, J.P., 2014. Intake, digestibility and milk yield in goats fed Flemingia macrophylla with or without polyethylene glycol. Small Ruminant Research, 116, 88–93. Scholar
  16. Gardiner, T.D., Coleman, M.D., Innocenti, F., Tompkins, F., Connor, A., Garnsworthy, J.M., Reynolds, C.K., Waterhouse, A., Wills, D., 2015. Determination of the absolute accuracy of UK chamber facilities used in measuring methane emissions from livestock. Measurement, 66, 272–279.CrossRefGoogle Scholar
  17. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G., 2013. Tackling climate change through livestock—a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome p 1.Google Scholar
  18. Goel, G., Makkar, H.P.S., 2012. Methane mitigation from ruminants using tannins and saponins. Tropical Animal Health and Production, 4, 729–739.CrossRefGoogle Scholar
  19. Grainger, C., Clarke, T., Auldist, M.J., Beauchemin, K.A., McGinn, S.M., Waghorn, G.C., Eckard, R.J., 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian Journal of Animal Science, 89, 241–251.CrossRefGoogle Scholar
  20. Hales, K.E., Brown-Brandl, T.M., Freetly, H.C., 2014. Effects of decreased dietary roughage concentration on energy metabolism and nutrient balance in finishing beef cattle. Journal of Animal Science, 92, 264–271.CrossRefGoogle Scholar
  21. Harrison, M.T., McSweeney, C., Tomkins, N., Eckard, R.J., 2015. Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agriculture Systems, 136, 138–146. Scholar
  22. Hassanat, F., Benchaar, C., 2013. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. Journal of the Science of Food and Agriculture, 93, 332–339. Scholar
  23. Huang, X.D., Liang, J.B., Tan, H.Y., Yahya, R., Ho, Y.W., 2011. Effects of Leucaena condensed tannins of differing molecular weights on in vitro CH4 production. Animal Feed Science and Technology, 166-167, 373–376. Scholar
  24. Jayanegara, A., Leiber, F., Kreuzer, M., 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal Animal Physiology and Animal Nutrition, 96, 365–375.CrossRefGoogle Scholar
  25. Kebreab, E., Johnson, K.A., Archibeque, S.L., Pape, D., Wirth, T., 2008. Model for estimating enteric methane emissions from United States dairy and feedlot cattle. Journal of Animal Science, 86, 2738–2748.CrossRefGoogle Scholar
  26. Kennedy, P.M., Charmley, E., 2012. Methane yields from Brahman cattle fed tropical grasses and legumes. Animal Production Science, 52, 225–239. Scholar
  27. Kennedy, PM., Boniface, A.N., Liang, Z.J., Muller, D., Murray, R.M., 1992. “Intake and Digestion in Swamp Buffaloes and Cattle II. The Comparative Response to Urea Supplements in Animals Fed Tropical Grasses”. Journal of Agriculture Science, 119, 243–254.CrossRefGoogle Scholar
  28. Leng, R.A., 1990. Factors affecting the utilization of ‘poor-quality’ forages by ruminants particularly under tropical conditions. Nutrition Research Reviews, 3, 277–303.CrossRefGoogle Scholar
  29. Min, B.R., Pinchak, W.E., Anderson, R.C., Fulford, J.D., Puchala, R., 2006. Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat. Journal of Animal Science, 84, 2546–2554.CrossRefGoogle Scholar
  30. Min, B.R., Solaiman, S., Shange, R., Eun, J.S., 2014. Gastrointestinal bacterial and methanogenic archaea diversity dynamics associated with condensed tannin-containing pine bark diet in goats using 16S rDNA amplicon pyrosequencing. International Journal of Microbiology. 2014, 11. Scholar
  31. Min, B.R., Solaiman, S., Terrill, T., Ramsay, A., Mueller-Harvey, I., 2015. The effects of tannins-containing ground pine bark diet upon nutrient digestion, nitrogen balance, and mineral retention in meat goats. Journal of Animal Science and Biotechnology, 6, 1–18. Scholar
  32. Mohammadabadi, T., Jolazadeh, A., 2017. Replacement of alfalfa hay (Medicago sativa L.) with subabul (Leucaena leucocephala) leaf meal in diets of Najdi goats: effect on digestion activity of rumen microorganisms. Tropical Animal Health and Production,
  33. Mueller-Harvey, I., 2006. Unravelling the conundrum of tannins in animal nutrition and health. Journal of the Science of Food and Agriculture, 86, 2010–2037.CrossRefGoogle Scholar
  34. Patra, A.K., Min, B.R, Saxena J., 2012. Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants. In: Patra AK, editor. Diet Phytochem Microbes. Dordrecht: Springer Netherlands; p. 237–62.CrossRefGoogle Scholar
  35. Patra, A., Park, T., Kim, M., Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8, 1–18. Scholar
  36. Pinares, C., Waghorn, G., 2014. Technical Manual on Respiration Chamber Designs. New Zealand Ministry of Agriculture and Forestry, Wellington NZ. Acccessed 15 March 2015.
  37. Priolo, A., Waghorn, G. C., Lanza, M., Biondi, L., Pennisi, P., 2000. Polyethylene glycol as a means for reducing the impact of condensed tannins in carob pulp: effects on lamb growth performance and meat quality. Journal of Animal Science, 78, 810–816.CrossRefGoogle Scholar
  38. Puchala, R., Animut, G., Patra, A.K., Detweiler, G.D., Wells, J.E., Varel, V.H., Sahlu, T., 2012. Methane emissions by goats consuming Sericea lespedeza at different feeding frequencies. Animal Feed Science and Technology, 175, 76–84.CrossRefGoogle Scholar
  39. Ramos-Morales, E., Arco-Pérez, A., Martín-García, A.I., Yáñez-Ruiz, D.R., Frutos, P., Hervás, G., 2014. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Animal Feed Science and Technology, 198, 57–66.CrossRefGoogle Scholar
  40. Reed, J.D., 1995. Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science 73, 1516–1528.CrossRefGoogle Scholar
  41. Rogers, J.A., Conrad, H.R., Dehority, B.A., Grubb, J.A., 1986. Microbial numbers, rumen fermentation and nitrogen utilization of steers using wet and dried brewers grains. Journal of Dairy Science, 59, 745–753.CrossRefGoogle Scholar
  42. Ryan, J.P., 1980. Determination of volatile fatty acids and some related compounds in ovine rumen fluid, urine and blood plasma by gas-liquid chromatography. Analytical Biochemistry, 108, 374–384.CrossRefGoogle Scholar
  43. SAS., 2006. Statical Analysis System, Users. SAS Institute, Cary, N.C. USA.Google Scholar
  44. Schneider, B.H and Flatt, W.P., 1975. The Evaluation of Feeds through Digestibility Experiments. The University of Georgia Press. Athens, pp. 423.Google Scholar
  45. Silanikove, N., Gilboa, N., Perevolotsky, Z., Nitsan, Z., 1996. Goats fed tannin-containing leaves do not exhibit toxic syndrome. Small Ruminant Research, 25, 195–201.CrossRefGoogle Scholar
  46. Soltan, Y.A., Morsy, A.S., Sallam, S.M.A., Louvandini, H., Abdalla, A.L., 2012. Comparative in vitro evaluation of forage legumes (prosopis, acacia, atriplex, and leucaena) on ruminal fermentation and methanogenesis. Journal of Animal and Feed Sciences, 21, 759–772.CrossRefGoogle Scholar
  47. Soltan, Y.A., Morsy, A.S., Sallam, S.M.A., Lucas, R.C., Louvandini, H., Kreuzer, M., Abdalla, A.L., 2013. Contribution of condensed tannins and mimosine to the methane mitigation caused by feeding <i>Leucaena leucocephala</i>. Archives of Animal Nutrition, 67, 169–184.CrossRefGoogle Scholar
  48. Tan, H.Y., Sieo, C.C., Abdullah, N., Liang, J.B., Huang, X.D., Ho, Y.W., 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Animal Feed Science and Technology, 169, 185–193.CrossRefGoogle Scholar
  49. Tedeschi, L.O., Ramírez-Restrepo, C.A., Muir, J.P., 2014. Developing a conceptual model of possible benefits of condensed tannins for ruminant production. Animal. 8, 1095–1105.CrossRefGoogle Scholar
  50. Tiemann, T.T., Lascano, C.E., Wettstein, H.R., Mayer, A.C., Kreuzer, M., Hess, H.D., 2008. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal, 2, 790–799.CrossRefGoogle Scholar
  51. Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • A. T. Piñeiro-Vázquez
    • 1
    • 2
    Email author
  • G. Jiménez-Ferrer
    • 3
    • 4
  • J. A. Alayon-Gamboa
    • 3
    • 4
  • A. J. Chay-Canul
    • 5
  • A. J. Ayala-Burgos
    • 1
  • C. F. Aguilar-Pérez
    • 1
  • J. C. Ku-Vera
    • 1
  1. 1.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de YucatánMéridaMexico
  2. 2.Instituto Tecnológico de Conkal. División de Estudios de Posgrado e Investigación. Avenida Tecnológico s/nConkalMexico
  3. 3.El Colegio de la Frontera Sur (ECOSUR) Carretera Panamericana y Periférico Sur s/nSan Cristóbal de las CasasMexico
  4. 4.El Colegio de la Frontera Sur (ECOSUR), Unidad CampecheCampecheMexico
  5. 5.División Académica de Ciencias AgropecuariasUniversidad Juárez Autónoma de TabascoVillahermosaMexico

Personalised recommendations