Tribology Letters

, 68:22 | Cite as

Friction Reduction of Hydrogenated Graphene by Strain Engineering

  • Yong Peng
  • Jiahao Li
  • Xianqiong Tang
  • Bo Liu
  • Xuanzhen Chen
  • Lichun BaiEmail author
Original Paper


The pursuit of superlow friction in graphene systems has been a persistent target during the past decade. However, the friction is exhibited a remarkable increase for the chemically modified graphene with hydrogen element. To overcome this problem, both biaxial strain and uniaxial strains are applied on hydrogenated graphene to study the effect of strain on the interlayer friction between a rigid flake and a spring-supported hydrogenated graphene substrate by molecular dynamics simulations. Our simulation results indicate that with the increase of the hydrogenation coverage, the atomic-level roughness of hydrogenated graphene is found to increase, which eventually results in the increasing friction. During the stretching process, the atomic-level roughness of hydrogenated graphene is gradually reduced, which can be used to interpret the mechanism of the reduction of friction induced by strain. Such strain-induced reductions are robust over a wide range of commensurability, loads, and sizes. Moreover, it is demonstrated that the superlow friction also can be realized through the formation of incommensurate interface, the low rigidity of substrate, and the extended size of flake in sliding direction. These findings provide not only a fundamental understanding for the evolution of friction on hydrogenated graphene, but also an important insight for improving the tribological behaviors of nanodevices based on functionalized graphene.


Friction Hydrogenated graphene Biaxial strain Uniaxial strain Molecular dynamics 



We acknowledge financial support of the National Natural Science Foundation of China (51405517, U1334208), the Natural Science Foundation of Hunan (2015JJ3155) and the Hunan Provincial Natural Science Foundation of China (2019JJ50622).


  1. 1.
    Urbakh, M., Meyer, E.: Nanotribology: the renaissance of friction. Nat. Mater. 9, 8–10 (2010)CrossRefGoogle Scholar
  2. 2.
    Lee, C., Li, Q., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010)CrossRefGoogle Scholar
  3. 3.
    Amiri, M., Khonsari, M.M.: On the thermodynamics of friction and wear—a review. Entropy 12, 1021–1049 (2010)CrossRefGoogle Scholar
  4. 4.
    Hu, Y.Z., Ma, T.B., Wang, H.: Energy dissipation in atomic-scale friction. Friction 1(1), 24–40 (2013)CrossRefGoogle Scholar
  5. 5.
    Hirano, M., Shinjo, K.: Atomistic locking and friction. Phys. Rev. B. 41, 11837–11851 (1990)CrossRefGoogle Scholar
  6. 6.
    Müser, M.H.: Structural lubricity: role of dimension and symmetry. Europhys. Lett. 66, 97–103 (2004)CrossRefGoogle Scholar
  7. 7.
    Hod, O., Meyer, E., Zheng, Q., Urbakh, M.: Structural superlubricity and ultralow friction across the length scales. Nature 563, 485–492 (2018)CrossRefGoogle Scholar
  8. 8.
    Zheng, Q., Jiang, B., Liu, S., Weng, Y., Lu, L., Xue, Q., Zhu, J., Jiang, Q., Wang, S., Peng, L.: Self-retracting motion of graphite microflakes. Phys. Rev. Lett. 100, 1–4 (2008)Google Scholar
  9. 9.
    Zhang, R., Ning, Z., Zhang, Y., Zheng, Q., Chen, Q., Xie, H., Zhang, Q., Qian, W., Wei, F.: Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 8, 912–916 (2013)CrossRefGoogle Scholar
  10. 10.
    Martin, J.M., Donnet, C., Le Mogne, T., Epicier, T.: Superlubricity of molybdenum disulphide. Phys. Rev. B. 52, 13–18 (1993)Google Scholar
  11. 11.
    Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017)CrossRefGoogle Scholar
  12. 12.
    Lin, L.Y., Kim, D.E., Kim, W.K., Jun, S.C.: Friction and wear characteristics of multi-layer graphene films investigated by atomic force microscopy. Surf. Coat. Technol. 205, 4864–4869 (2011)CrossRefGoogle Scholar
  13. 13.
    Zhai, W., Srikanth, N., Kong, L.B., Zhou, K.: Carbon nanomaterials in tribology. Carbon 119, 150–171 (2017)CrossRefGoogle Scholar
  14. 14.
    Liu, Z., Yang, J., Grey, F., Liu, J.Z., Liu, Y., Wang, Y., Yang, Y., Cheng, Y., Zheng, Q.: Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 1–5 (2012)Google Scholar
  15. 15.
    Mandelli, D., Leven, I., Hod, O., Urbakh, M.: Sliding friction of graphene/hexagonal-boron nitride heterojunctions: a route to robust superlubricity. Sci. Rep. 7, 1–10 (2017)CrossRefGoogle Scholar
  16. 16.
    Filippov, A.E., Dienwiebel, M., Frenken, J.W.M., Klafter, J., Urbakh, M.: Torque and twist against superlubricity. Phys. Rev. Lett. 100, 1–4 (2008)CrossRefGoogle Scholar
  17. 17.
    Leven, I., Maaravi, T., Azuri, I., Kronik, L., Hod, O.: Interlayer potential for graphene/h-BN heterostructures. J. Chem. Theory Comput. 12, 2896–2905 (2016)CrossRefGoogle Scholar
  18. 18.
    Leven, I., Krepel, D., Shemesh, O., Hod, O.: Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 4, 115–120 (2013)CrossRefGoogle Scholar
  19. 19.
    Wang, L.F., Ma, T.B., Hu, Y.Z., Zheng, Q., Wang, H., Luo, J.: Superlubricity of two-dimensional fluorographene/MoS 2 heterostructure: a first-principles study. Nanotechnology 25, 385701 (2014)CrossRefGoogle Scholar
  20. 20.
    Wang, G., Dai, Z., Wang, Y., Tan, P., Liu, L., Xu, Z., Wei, Y., Huang, R., Zhang, Z.: Measuring interlayer shear stress in bilayer graphene. Phys. Rev. Lett. 119, 1–7 (2017)Google Scholar
  21. 21.
    Liu, Y., Grey, F., Zheng, Q.: The high-speed sliding friction of graphene and novel routes to persistent superlubricity. Sci. Rep. 4, 1–7 (2014)Google Scholar
  22. 22.
    Wang, K., Ouyang, W., Cao, W., Ma, M., Zheng, Q.: Robust superlubricity by strain engineering. Nanoscale 11, 2186–2193 (2019)CrossRefGoogle Scholar
  23. 23.
    Huang, J., Han, Q.: Mechanism of axial strain effects on friction in carbon nanotube rotating bearings. Nanotechnology 29, 325703 (2018)CrossRefGoogle Scholar
  24. 24.
    Jiang, T., Huang, R., Zhu, Y.: Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv. Funct. Mater. 24, 396–402 (2014)CrossRefGoogle Scholar
  25. 25.
    Si, C., Sun, Z., Liu, F.: Strain engineering of graphene: a review. Nanoscale 8, 3207–3217 (2016)CrossRefGoogle Scholar
  26. 26.
    Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)CrossRefGoogle Scholar
  27. 27.
    Li, Q., Liu, X.Z., Kim, S.P., Shenoy, V.B., Sheehan, P.E., Robinson, J.T., Carpick, R.W.: Fluorination of graphene enhances friction due to increased corrugation. Nano Lett. 14, 5212–5217 (2014)CrossRefGoogle Scholar
  28. 28.
    Pei, Q.X., Sha, Z.D., Zhang, Y.W.: A theoretical analysis of the thermal conductivity of hydrogenated graphene. Carbon 49, 4752–4759 (2011)CrossRefGoogle Scholar
  29. 29.
    Boukhvalov, D.W., Katsnelson, M.I., Lichtenstein, A.I.: Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 1–7 (2008)Google Scholar
  30. 30.
    Ko, J.H., Kwon, S., Byun, I.S., Choi, J.S., Park, B.H., Kim, Y.H., Park, J.Y.: Nanotribological properties of fluorinated, hydrogenated, and oxidized graphenes. Tribol. Lett. 50, 137–144 (2013)CrossRefGoogle Scholar
  31. 31.
    Felts, J.R., Oyer, A.J., Hernández, S.C., Whitener, K.E., Robinson, J.T., Walton, S.G., Sheehan, P.E.: Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, 6467 (2015)CrossRefGoogle Scholar
  32. 32.
    Kwon, S., Ko, J.H., Jeon, K.J., Kim, Y.H., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12, 6043–6048 (2012)CrossRefGoogle Scholar
  33. 33.
    Dong, Y., Wu, X., Martini, A.: Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 24, 375701 (2013)CrossRefGoogle Scholar
  34. 34.
    Hölscher, H., Ebeling, D., Schwarz, U.D.: Friction at atomic-scale surface steps: experiment and theory. Phys. Rev. Lett. 101, 1–4 (2008)CrossRefGoogle Scholar
  35. 35.
    Steiner, P., Gnecco, E., Krok, F., Budzioch, J., Walczak, L., Konior, J., Szymonski, M., Meyer, E.: Atomic-scale friction on stepped surfaces of ionic crystals. Phys. Rev. Lett. 106, 2–5 (2011)CrossRefGoogle Scholar
  36. 36.
    Dong, Y., Liu, X.Z., Egberts, P., Ye, Z., Carpick, R.W., Martini, A.: Correlation between probe shape and atomic friction peaks at graphite step edges. Tribol. Lett. 50, 49–57 (2013)CrossRefGoogle Scholar
  37. 37.
    Riedo, E., Lévy, F., Brune, H.: Kinetics of capillary condensation in nanoscopic sliding friction. Phys. Rev. Lett. 88, 4 (2002)CrossRefGoogle Scholar
  38. 38.
    Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D. Appl. Phys. 41, 123001 (2008)CrossRefGoogle Scholar
  39. 39.
    Bai, L., Srikanth, N., Zhao, B., Liu, B., Liu, Z., Zhou, K.: Lubrication mechanisms of graphene for DLC films scratched by a diamond tip. J. Phys. D. Appl. Phys. 49, 485302 (2016)CrossRefGoogle Scholar
  40. 40.
    Guo, Y., Guo, W., Chen, C.: Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study. Phys. Rev. B. 76, 155429 (2007)CrossRefGoogle Scholar
  41. 41.
    Li, S., Li, Q., Carpick, R.W., Gumbsch, P., Liu, X.Z., Ding, X., Sun, J., Li, J.: The evolving quality of frictional contact with graphene. Nature 539, 541–545 (2016)CrossRefGoogle Scholar
  42. 42.
    Guo, Z., Chang, T., Guo, X., Gao, H.: Mechanics of thermophoretic and thermally induced edge forces in carbon nanotube nanodevices. J. Mech. Phys. Solids. 60, 1676–1687 (2012)CrossRefGoogle Scholar
  43. 43.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRefGoogle Scholar
  44. 44.
    Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)CrossRefGoogle Scholar
  45. 45.
    Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dyanmics. J. Mol. Graph. 14, 33–38 (1996)CrossRefGoogle Scholar
  46. 46.
    Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)CrossRefGoogle Scholar
  47. 47.
    Girifalco, L.A., Hodak, M., Lee, R.S.: Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B. 62, 13104–13110 (2000)CrossRefGoogle Scholar
  48. 48.
    Guo, L.Q., Ma, C.X., Wang, S.A., Ma, H., Li, X.: Molecular simulation of hydrogen adsorption density in single-walled carbon nanotubes and multilayer adsorption mechanism. J. Mater. Sci. Technol. 21, 123–127 (2005)CrossRefGoogle Scholar
  49. 49.
    Hirschfelder, J., Curtiss, C.F., Bird, R.B., Wiley, J.: Molecular Theory of Gases and Liquids. Wiley, New York (1955).CrossRefGoogle Scholar
  50. 50.
    Bhowmick, S., Banerji, A., Alpas, A.T.: Role of humidity in reducing sliding friction of multilayered graphene. Carbon 87, 374–384 (2015)CrossRefGoogle Scholar
  51. 51.
    Dong, Y., Duan, Z., Tao, Y., Wei, Z., Gueye, B., Zhang, Y., Chen, Y.: Friction evolution with transition from commensurate to incommensurate contacts between graphene layers. Tribol. Int. 136, 259–266 (2019)CrossRefGoogle Scholar
  52. 52.
    Dong, Y.: Effects of substrate roughness and electron-phonon coupling on thickness-dependent friction of graphene. J. Phys. D 47, 055305 (2014)CrossRefGoogle Scholar
  53. 53.
    Ye, Z., Balkanci, A., Martini, A., Baykara, M.Z.: Effect of roughness on the layer-dependent friction of few-layer graphene. Phys. Rev. B. 96, 1–6 (2017)Google Scholar
  54. 54.
    Harrison, J.A., Colton, R.J., White, C.T., Brenner, D.W.: Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces. Wear 168, 127–133 (1993)CrossRefGoogle Scholar
  55. 55.
    Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B. 75, 1–4 (2007)CrossRefGoogle Scholar
  56. 56.
    Hod, O.: Interlayer commensurability and superlubricity in rigid layered materials. Phys. Rev. B. 86, 1–8 (2012)CrossRefGoogle Scholar
  57. 57.
    Peng, Y., Zeng, X., Liu, L., Cao, X., Zou, K., Chen, R.: Nanotribological characterization of graphene on soft elastic substrate. Carbon N. Y. 124, 541–546 (2017)CrossRefGoogle Scholar
  58. 58.
    Bai, Q., He, X., Bai, J., Tong, Z.: An atomistic investigation of the effect of strain on frictional properties of suspended graphene. AIP Adv. 6, 055308 (2016)CrossRefGoogle Scholar
  59. 59.
    Ye, Z., Tang, C., Dong, Y., Martini, A.: Role of wrinkle height in friction variation with number of graphene layers. J. Appl. Phys. 112, 10–13 (2012)Google Scholar
  60. 60.
    Zhang, H., Guo, Z., Gao, H., Chang, T.: Stiffness-dependent interlayer friction of graphene. Carbon 94, 60–66 (2015)CrossRefGoogle Scholar
  61. 61.
    Xu, C., Xue, T., Qiu, W., Kang, Y.: Size effect of the interfacial mechanical behavior of graphene on a stretchable substrate. ACS Appl. Mater. Interfaces 8, 27099–27106 (2016)CrossRefGoogle Scholar
  62. 62.
    Zhang, H., Chang, T.: Edge orientation dependent nanoscale friction. Nanoscale 10, 2447–2453 (2018)CrossRefGoogle Scholar
  63. 63.
    Hirai, N., Eyring, H.: Bulk viscosity of liquids. J. Appl. Phys. 29, 810–816 (1958)CrossRefGoogle Scholar
  64. 64.
    Ouyang, W., Ma, M., Zheng, Q., Urbakh, M.: Frictional properties of nanojunctions including atomically thin sheets. Nano Lett. 16, 1878–1883 (2016)CrossRefGoogle Scholar
  65. 65.
    Fang, J., Chen, B., Pan, H.: Anomalous friction of graphene nanoribbons on waved graphenes. Theor. Appl. Mech. Lett. 5, 212–215 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Yong Peng
    • 1
    • 2
  • Jiahao Li
    • 1
    • 2
  • Xianqiong Tang
    • 3
  • Bo Liu
    • 4
  • Xuanzhen Chen
    • 1
    • 5
  • Lichun Bai
    • 1
    • 5
    Email author
  1. 1.Key Laboratory of Traffic Safety On Track (Central South University), Ministry of Education, School of Traffic & Transportation EngineeringCentral South UniversityChangshaChina
  2. 2.National & Local Joint Engineering Research Center of Safety Technology for Rail VehicleCentral South UniversityChangshaChina
  3. 3.Department of Civil Engineering and MechanicsXiangtan UniversityXiangtanChina
  4. 4.School of Mechanical and Vehicle EngineeringHunan UniversityChangshaPeople’s Republic of China
  5. 5.Joint International Research Laboratory of Key Technology for Rail Traffic SafetyCentral South UniversityChangshaChina

Personalised recommendations