Tribology Letters

, 67:125 | Cite as

Selenium Chemisorption Makes Iron Surfaces Slippery

  • Giulio Fatti
  • M. C. RighiEmail author
Original Paper


In the effort to reduce the energy consumption due to friction, finding new effective lubricants is of primary importance. Here we suggest selenium as a possible element for a highly effective lubricant on iron/iron interfaces by means of density functional theory. The adsorption properties of Se on the most stable iron surface are studied and the metal–adsorbate interaction is characterized. The adsorption reveals that selenium behaves similarly to sulfur and phosphorus, two key elements for high-pressure, anti-wear lubricant additives. The tribological properties of the Fe–Se/Se–Fe interface and the electronic modifications induced by the additive are then investigated and compared with Fe–P/P–Fe and Fe–S/S–Fe interfaces. The charge rearrangement at the interface and the density of states reveal the formation of strong covalent interactions inside the adsorbed layer of selenium atoms that weaken the metal–metal interaction. The calculated work of adhesion and ideal interfacial shear strength show that, with respect to P and S, Se possesses superior lubricating properties.


Boundary lubrication Adsorption Adhesion Selenium First principles calculations 


  1. 1.
    Holmberg, K., Erdemir, A.: Global impact of friction on energy consumption, economy and environment. Fme Trans 43(3), 181–5 (2015)Google Scholar
  2. 2.
    Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption, costs and emissions. Friction 5(3), 263–284 (2017)Google Scholar
  3. 3.
    Binnig, G., Quate, C.F., Gerber, Ch.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)Google Scholar
  4. 4.
    Sarid, D., Elings, V.: Review of scanning force microscopy. J. Vac Sci. Technol. 9(2), 431–437 (1991)Google Scholar
  5. 5.
    Dagata, J.A.: Scanning force microscopy with applications to electric, magnetic and atomic forces by dror sarid oxford university press, 1991. Scanning 14(2), 118–120 (1992)Google Scholar
  6. 6.
    Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435(7044), 929 (2005)Google Scholar
  7. 7.
    Luan, B., Robbins, M.O.: Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys. Rev. E 74, 026111 (2006)Google Scholar
  8. 8.
    Reguzzoni, M., Fasolino, A., Molinari, E., Righi, M.C.: Potential energy surface for graphene on graphene: ab initio derivation, analytical description, and microscopic interpretation. Phys. Rev. B 86, 245434 (2012)Google Scholar
  9. 9.
    Zilibotti, G., Righi, M.C.: Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage. Langmuir 27(11), 6862–6867 (2011). PMID: 21545120Google Scholar
  10. 10.
    Zilibotti, G., Righi, M.C., Ferrario, M.: Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces. Phys. Rev. B 79, 075420 (2009)Google Scholar
  11. 11.
    Cahangirov, S., Ataca, C., Topsakal, M., Sahin, H., Ciraci, S.: Frictional figures of merit for single layered nanostructures. Phys. Rev. Lett. 108, 126103 (2012)Google Scholar
  12. 12.
    De Barros Bouchet, M.-I., Zilibotti, G., Matta, C., Righi, M.C., Vandenbulcke, L., Vacher, B., Martin, J.-M.: Friction of diamond in the presence of water vapor and hydrogen gas. Coupling gas-phase lubrication and first-principles studies. J. Phys. Chem. C 116(12), 6966–6972 (2012)Google Scholar
  13. 13.
    Restuccia, P., Levita, G., Wolloch, M., Losi, G., Fatti, G., Ferrario, M., Righi, M.C.: Ideal adhesive and shear strengths of solid interfaces: a high throughput ab initio approach. Comput. Mater. Sci. 154, 517–529 (2018)Google Scholar
  14. 14.
    Restuccia, P., Righi, M.C.: Tribochemistry of graphene on iron and its possible role in lubrication of steel. Carbon 106, 118–124 (2016)Google Scholar
  15. 15.
    De Barros-Bouchet, M.I., Righi, M.C., Philippon, D., Mambingo-Doumbe, S., Le-Mogne, T., Martin, J.M., Bouffet, A.: Tribochemistry of phosphorus additives: experiments and first-principles calculations. RSC Adv. 5, 49270–49279 (2015)Google Scholar
  16. 16.
    Righi, M.C., Loehlé, S., De Barros Bouchet, M.I., Mambingo-Doumbe, S., Martin, J.M.: A comparative study on the functionality of s- and p-based lubricant additives by combined first principles and experimental analysis. RSC Adv. 6, 47753–47760 (2016)Google Scholar
  17. 17.
    Seah, M.P.: Adsorption-induced interface decohesion. Acta Metall. 28(7), 955–962 (1980)Google Scholar
  18. 18.
    Rangarajan, V., Toncheff, R., Franks, L.L.: Surface segregation of phosphorus, carbon, and sulfur in commercial low-carbon grades of steel. Metall. Mater. Trans. A 29(11), 2707–2715 (1998)Google Scholar
  19. 19.
    Arabczyk, W., Mssig, H.-J., Storbeck, F.: Phosphorus segregation on iron (111) surfaces studied by AES, XPS, and LEED. Surf. Sci. 251–252, 804–808 (1991)Google Scholar
  20. 20.
    Shell, C.A., Rivière, J.C.: Quantitative Auger spectroscopic analysis of segregation of phosphorus in iron. Surf. Sci. 40(1), 149–156 (1973)Google Scholar
  21. 21.
    Wachowicz, E., Kiejna, A.: Effect of impurities on structural, cohesive and magnetic properties of grain boundaries in \(\alpha\)-fe. Model. Simulation Mater. Sci. Eng. 19(2), 025001 (2011)Google Scholar
  22. 22.
    Fatti, G., Restuccia, P., Calandra, C., Righi, M.C.: Phosphorus adsorption on fe(110): an ab initio comparative study of iron passivation by different adsorbates. J. Phys. Chem. C 122(49), 28105–28112 (2018)Google Scholar
  23. 23.
    Pichard, C., Guttmann, M., Rieu, J., Goux, C.: Sgrgation intergranulaire des lments de la famille du soufre dans le fer pur. Le Journal de Physique Colloques 36(C4), C4 151–155 (1975)Google Scholar
  24. 24.
    McMahon Jr., C.J., Marchut, L.: Solute segregation in iron-based alloys. J. Vac. Sci. Technol. 15(2), 450–466 (1978)Google Scholar
  25. 25.
    Hondros, E.D., Seah, M.P.: The theory of grain boundary segregation in terms of surface adsorption analogues. Metall. Trans. A 8(9), 1363–1371 (1977)Google Scholar
  26. 26.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)Google Scholar
  27. 27.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)Google Scholar
  28. 28.
    WebElements Periodic Table:
  29. 29.
    Monkhorst, H.J., Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)Google Scholar
  30. 30.
    Wolloch, M., Levita, G., Restuccia, P., Righi, M.C.: Interfacial charge density and its connection to adhesion and frictional forces. Phys. Rev. Lett. 121, 026804 (2018)Google Scholar
  31. 31.
    González, E.A., Jasen, P.V., Sandoval, M., Bechthold, P., Juan, A., Setina Batic, B., Jenko, M.: Density functional theory study of selenium adsorption on fe (1 1 0). Appl. Surf. Sci. 257(15), 6878–6883 (2011)Google Scholar
  32. 32.
    Mortensen, J.J., Ganduglia-Pirovano, M.V., Hansen, L.B., Hammer, B., Stoltze, P., Nrskov, J.K.: Nitrogen adsorption on Fe(111), (100), and (110) surfaces. Surf. Sci. 422(1), 8–16 (1999)Google Scholar
  33. 33.
    Spencer, M.J.S., Snook, I.K., Yarovsky, I.: Coverage-dependent adsorption of atomic sulfur on Fe(110): a DFT study. J. Phys. Chem. B 109(19), 9604–9612 (2005)Google Scholar
  34. 34.
    Weissenrieder, J., Göthelid, M., Månsson, M., von Schenck, H., Tjernberg, O., Karlsson, U.O.: Oxygen structures on Fe(110). Surf. Sci. 527(1), 163–172 (2003)Google Scholar
  35. 35.
    Lang, N.D.: Small adsorbate dipole moments need not imply small charge transfers. Surf. Sci. Lett. 127(2), L118–L122 (1983)Google Scholar
  36. 36.
    Bagus, P.S., Käfer, D., Witte, G., Wöll, C.: Work function changes induced by charged adsorbates: origin of the polarity asymmetry. Phys. Rev. Lett. 100, 126101 (2008)Google Scholar
  37. 37.
    Migani, A., Sousa, C., Illas, F.: Chemisorption of atomic chlorine on metal surfaces and the interpretation of the induced work function changes. Surf. Sci. 574(2), 297–305 (2005)Google Scholar
  38. 38.
    Michaelides, A., Hu, P., Lee, M.-H., Alavi, A., King, D.A.: Resolution of an ancient surface science anomaly: work function change induced by n adsorption on \(\rm W{100}\). Phys. Rev. Lett. 90, 246103 (2003)Google Scholar
  39. 39.
    Leung, T.C., Kao, C.L., Su, W.S., Feng, Y.J., Chan, C.T.: Relationship between surface dipole, work function and charge transfer: some exceptions to an established rule. Phys. Rev. B 68, 195408 (2003)Google Scholar
  40. 40.
    Weinan, E., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)Google Scholar
  41. 41.
    Weinan, E., Ren, W., Vanden-Eijnden, E.: Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J. Chem. Phys. 126(16), 164103 (2007)Google Scholar
  42. 42.
    Berman, D., Deshmukh, S.A., Sankaranarayanan, S.K.R.S., Erdemir, A., Sumant, A.V.: Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348(6239), 1118–1122 (2015)Google Scholar
  43. 43.
    Cahangirov, S., Ciraci, S., Ongun Özçelik, V.: Superlubricity through graphene multilayers between ni(111) surfaces. Phys. Rev. B 87, 205428 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Modena and Reggio EmiliaModenaItaly

Personalised recommendations