Advertisement

Tribology Letters

, 67:90 | Cite as

Tribological Behavior of Restorative Dental Microcomposites After Exposure to Mouth Acids

  • A. C. Branco
  • J. Brito
  • M. Codorniz
  • M. Steinhausen
  • F. Martins
  • J. Reis
  • P. Maurício
  • R. ColaçoEmail author
  • A. P. SerroEmail author
Original Paper
  • 17 Downloads

Abstract

In this work, the effect of the exposure to acids that are usually present in the mouth environment on the tribological behavior of restorative dental microcomposites is evaluated. A commercial microcomposite widely used in dentistry (Filtek Z250) and a strong and a week acid that are part of the mouth environment (hydrochloric and lactic acid, respectively) were chosen for the study. Samples of the microcomposite were exposed to each acid for two different periods: 1 day and 7 days, respectively. It was observed that the exposure to both acids lead to an increase of the surface roughness, especially in the samples that contacted for the shorter period with hydrochloric acid, and the same trend was observed in what concerns the coefficient of friction. Concomitantly, the resins’ microhardness suffered a small decreased after exposure to both acids. However, it was observed that the wear resistance of the microcomposite is only affected in a statistically significant manner after the exposition to the hydrochloric acid solution. Atomic force microscopy observation of the worn regions enables to attribute the decrease of the wear resistance of the material after the exposure to the strong acid to the detachment of the resin’s filler microparticles of silica and zirconia caused by the corrosive action of the strong acid. The results strongly suggest that the exposure to acids affects the dental resins’ tribomechanical performance which may compromise the restorations’ lifetime, especially in the case of exposure to the strong acids, such as hydrochloric.

Keywords

Microcomposite Acids Microhardness Roughness Friction coefficient Dental microcomposite Lactic acid Hydrochloric acid Friction Wear 

Notes

Acknowledgements

To Fundação para a Ciência e a Tecnologia for funding through projects 3D-DentalPrint (02/SAICT/2016/023940) and the unit projects UID/QUI/00100/2013, UID/BIM/04585/2016, and UID/EMS/50022/2019 (LAETA) from CQE, CiiEM, and IDMEC, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11249_2019_1204_MOESM1_ESM.docx (157 kb)
Supplementary material 1 (DOCX 156 kb)

References

  1. 1.
    Münchow, E.A., Ferreira, A.C.A., Machado, R.M.M., Ramos, S., Rodrigues-junior, S.A., Zanchi, C.H.: Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin. Braz. Dent. J. 25, 321–326 (2014)CrossRefGoogle Scholar
  2. 2.
    Sideridou, I.D., Karabela, M.M.: Sorption of water, ethanol or ethanol/water solutions by light-cured dental dimethacrylate resins. Dent. Mater. 27, 1003–1010 (2011)CrossRefGoogle Scholar
  3. 3.
    Hashemikamangar, S.S., Pourhashemi, S.J., Talebi, M., Kiomarsi, N., Kharazifard, M.J.: Effect of organic acids in dental biofilm on microhardness of a silorane-based composite. Restor. Dent. Endod. 40, 188–194 (2015)CrossRefGoogle Scholar
  4. 4.
    Hengtrakool, C., Kukiattrakoon, B.: Effect of naturally acidic agents on microhardness and surface micromorphology of restorative materials. Eur. J. Dent. 5, 89–100 (2011)Google Scholar
  5. 5.
    Correr, G.M., Caroline, R., Alonso, B., Baratto-filho, F., Correr-sobrinho, L., Alexandre, M., Sinhoreti, C., Puppin-rontani, R.M.: In vitro long-term degradation of aesthetic restorative materials in food-simulating media. Acta Odontol. Scand. 70, 101–108 (2012)CrossRefGoogle Scholar
  6. 6.
    Correr, G.M., Caroline, R., Alonso, B., Sobrinho, C., Puppin-rontani, R.M., Ferracane, J.L.: In vitro wear of resin-based materials—simultaneous corrosive and abrasive wear. J. Biomed. Mater. Res. B. 78, 105–114 (2005)Google Scholar
  7. 7.
    Fan, H., Gan, X., Liu, Y., Zhu, Z., Yu, H.: The nanomechanical and tribological properties of restorative dental composites after exposure in different types of media. J. Nanomater. 2, 1–9 (2014)Google Scholar
  8. 8.
    Distler, W.: The acid pattern in human dental plaque. J. Dent. Res. 62, 1–6 (1983)CrossRefGoogle Scholar
  9. 9.
    Staufenbiel, I., Adam, K., Deac, A., Geurtsen, W., Günay, H.: Influence of fruit consumption and fluoride application on the prevalence of caries and erosion in vegetarians: a controlled clinical trial. Eur. J. Clin. Nutr. 69, 1156–1160 (2015)CrossRefGoogle Scholar
  10. 10.
    El-serag, H.B., Sweet, S., Winchester, C.C., Dent, J.: Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 63, 871–880 (2014)CrossRefGoogle Scholar
  11. 11.
    Herbella, F.A., Patti, M.G., Herbella, F.A., Patti, M.G.: Gastroesophageal reflux disease: from pathophysiology to treatment. World J. Gastroenterol. 16, 3745–3749 (2010)CrossRefGoogle Scholar
  12. 12.
    Menezes, M.A., Herbella, F.A.M.: Pathophysiology of gastroesophageal reflux disease. World J. Surg. 41, 1666–1671 (2017)CrossRefGoogle Scholar
  13. 13.
    Baracco, B., Perdigão, J., Cabrera, E., Ceballos, L.: Two-year clinical performance of a low-shrinkage composite in posterior restorations. Oper. Dent. 38, 591–600 (2013)CrossRefGoogle Scholar
  14. 14.
    Filtek Z250: Technical product profile, pp. 1–32 (1998)Google Scholar
  15. 15.
    Yılmaz, E.C., Sadeler, R.: Investigation of three-body wear of dental materials under different chewing cycles. Sci. Eng. Compos. Mater. 25, 1–7 (2018)CrossRefGoogle Scholar
  16. 16.
    Sadat, S., Pourhashemi, S.J., Talebi, M., Kiomarsi, N., Javad, M.: Effect of organic acids in dental biofilm on microhardness of a silorane-based composite. Restor. Dent. Endod. 7658, 188–194 (2015)Google Scholar
  17. 17.
    Prioteasa, P., Ibris, N., Visan, T.: The influence of chemical nature on the corrosion behaviour of some dental alloys in Fusayama–Meyer artificial saliva. J. Optoelectron. Adv. Mater. 9, 3405–3410 (2007)Google Scholar
  18. 18.
    Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-herrero, J., Baro, A.M.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007)CrossRefGoogle Scholar
  19. 19.
    Branco, A.C., Moreira, V., Reis, J.A., Colaço, R., Figueiredo-pina, C.G., Serro, A.P.: Influence of contact configuration and lubricating conditions on the microtriboactivity of the Zirconia-Ti6Al4V pair used in dental applications. J. Mech. Behav. Biomed. Mater. 91, 164–173 (2019)CrossRefGoogle Scholar
  20. 20.
    Gharechahi, M., Moosavi, H., Forghani, M.: Effect of surface roughness and materials composition on biofilm formation. J. Biomater. Nanobiotechnol. 2012, 541–546 (2012)CrossRefGoogle Scholar
  21. 21.
    Aykent, F., Yondem, I., Atilla, G., Gunal, S.K., Mustafa, C.: Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J. Prosthet. Dent. 103, 221–227 (2004)CrossRefGoogle Scholar
  22. 22.
    Yuan, C., Wang, X., Gao, X., Chen, F., Liang, X., Li, D.: Effects of surface properties of polymer-based restorative materials on early adhesion of Streptococcus mutans in vitro. J. Dent. 54, 33–40 (2016)CrossRefGoogle Scholar
  23. 23.
    Carle, A., Nikdel, K., Wennerberg, A., Holmberg, K., Olsson, J.: Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials 22, 481–487 (2001)CrossRefGoogle Scholar
  24. 24.
    Daibs, B.D.P., da Silva, J.M.F., da Rocha, D.M., Júnior, V.V.B.F., Rodrigues, J.R.: Microstructural analysis of restorative materials submitted to acid exposure. Braz. Dent. Sci. 15, 19–26 (2012)Google Scholar
  25. 25.
    Khan, A.A., Siddiqui, A.Z., Al-kheraif, A.A.: Effect of different pH solvents on micro-hardness and surface topography of dental nano-composite: an in vitro analysis. Pak. J Med Sci. 31, 854–859 (2015)Google Scholar
  26. 26.
    Valinoti, A.C., Neves, B.G., Moreira, E., Maia, L.C.: Surface degradation of composite resins by acidic medicines and pH-cycling. J. Appl. Oral. Sci. 16, 257–265 (2008)CrossRefGoogle Scholar
  27. 27.
    Ilday, N., Bayindir, Y.Z., Erdem, V.: Effect of three different acidic beverages on surface characteristics of composite resin restorative materials. Mater. Res. Innov. 14, 385–391 (2010)CrossRefGoogle Scholar
  28. 28.
    Bajwa, N.K., Pathak, A.: Change in surface roughness of esthetic restorative materials after exposure to different immersion regimes in a cola drink. ISRN Dent. 2014, 1–7 (2014)CrossRefGoogle Scholar
  29. 29.
    Honório, H.M., Rios, D., Francisconi, L.F., Magalhães, A.C., Machado, M.A.A.M., Buzalaf, M.A.R.: Effect of prolonged erosive pH cycling on different restorative materials. J. Oral Rehabil. 35, 947–953 (2008)CrossRefGoogle Scholar
  30. 30.
    Wongkhantee, S., Patanapiradej, V., Maneenut, C., Tantbirojn, D.: Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J. Dent. 34, 214–220 (2006)CrossRefGoogle Scholar
  31. 31.
    Cilli, R., Carlos, J., Prakki, A.: Properties of dental resins submitted to pH catalysed hydrolysis. J. Dent. 40, 1144–1150 (2012)CrossRefGoogle Scholar
  32. 32.
    Voltarelli, F.R., Grv, O.D., Zhuh, W.K.H., Iru, L., Dw, G.D.V., Fldo, D., Khswdqh, V., Dflg, F., Hwkdqro, D.Q.G., Gherqglqj, L., Dqg, P., Oohu, R.U.: Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites. J. Appl. Oral. Sci. 9, 585–590 (2010)CrossRefGoogle Scholar
  33. 33.
    Persson, B.N.J., Scaraggi, M.: Theory of adhesion: role of surface roughness. J. Chem. Phys. 141, 124701 (2014)CrossRefGoogle Scholar
  34. 34.
    Yu, P., Xu, Z., Arola, D.D., Min, J., Zhao, P., Gao, S.: Effect of acidic agents on the wear behavior of a polymer infiltrated ceramic network (PICN) material. J. Mech. Behav. Biomed. Mater. 74, 154–163 (2017)CrossRefGoogle Scholar
  35. 35.
    Yap, A.U.J., Chew, C.L., Ong, L.F.K.L., Teoh, S.H.: Environmental damage and occlusal contact area wear of composite restoratives. J. Oral Rehabil. 29, 87–97 (2002)CrossRefGoogle Scholar
  36. 36.
    Turunen, R.: Experimental sports drinks with minimal dental erosion effect. Scand. J. Dent. Res. 98, 120–128 (1990)Google Scholar
  37. 37.
    Daokar, S., Kalekar, A., Daokar, S.: An in vitro evaluation of pH variations on physical properties of tooth coloured restorative materials. J. Dent. Med. Sci. 11, 25–27 (2013)Google Scholar
  38. 38.
    Colaço, R., Vilar, R.: A model for the abrasive wear of metallic matrix particle-reinforced materials. Wear 254, 625–634 (2003)CrossRefGoogle Scholar
  39. 39.
    Zigan, M., Ragan, M., Fischlschweiger, W., Bergman, M.: Hydrolytic degradation of dental composites. J. Dent. Res. 63, 1248–1254 (1984)CrossRefGoogle Scholar
  40. 40.
    De Witte, A.M.J.C., De Maeyer, E.A.P., Verbeeck, R.M.H.: Surface roughening of glass ionomer cements by neutral NaF solutions. Biomaterials 24, 1995–2000 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Centro de Desenvolvimento de Produto e Transferência de Tecnologia, Departamento de Engenharia Mecânica, Escola Superior de Tecnologia de SetúbalInstituto Politécnico de SetúbalSetúbalPortugal
  3. 3.Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas MonizQuinta da GranjaCaparicaPortugal
  4. 4.Departamento de Reabilitação Oral, Instituto Universitário Egas MonizQuinta da GranjaCaparicaPortugal
  5. 5.Instituto de Engenharia Mecânica (IDMEC), Departamento de Engenharia Mecânica, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations