Tribology Letters

, 67:53 | Cite as

Relaxation Tribometry: A Generic Method to Identify the Nature of Contact Forces

  • Alain Le BotEmail author
  • Julien Scheibert
  • Artem A. Vasko
  • Oleg M. Braun
Original Paper


Recent years have witnessed the development of so-called relaxation tribometers, the free oscillation of which is altered by the presence of frictional stresses within the contact. So far, analysis of such oscillations has been restricted to the shape of their decaying envelope, to identify in particular solid or viscous friction components. Here, we present a more general expression of the forces possibly acting within the contact, and retain six possible, physically relevant terms. Two of them, which had never been proposed in the context of relaxation tribometry, only affect the oscillation frequency, not the amplitude of the signal. We demonstrate that each of those six terms has a unique signature in the time-evolution of the oscillation, which allows efficient identification of their respective weights in any experimental signal. We illustrate our methodology on a PDMS sphere/glass plate torsional contact.


Relaxation tribometer Damped oscillations Amplitude decay curve Frequency shift Nonlinear contact forces Two-times averaging method 



We thank J. Perret-Liaudet, E. Rigaud, and O.A. Marchenko for fruitful discussions and critical comments. This work was supported by CNRS-Ukraine PICS Grant No. 7422.


  1. 1.
    Rayleigh, J.W.S.: The theory of sound. Dover Publications, New-York (1945). first published in 1877Google Scholar
  2. 2.
    Lorenz, H.: Lehrbuch der Technischen Physik. Erster Band: Technische Mechanik starrer Gebilde. Verlag von Julius Springer, Berlin (1924)CrossRefGoogle Scholar
  3. 3.
    Kimball, A.L.: Vibration damping, including the case of solid friction. J. Appl. Mech., Paper No. APM-51-21, 227–236 (1929)Google Scholar
  4. 4.
    Markho, P.H.: On Free vibrations with combined viscous and Coulomb damping. J. Dyn. Syst.-T. ASME 102, 283–286 (1980)CrossRefGoogle Scholar
  5. 5.
    Feeny, B.F., Liang, W.: A decrement method for the simultaneous estimation of Coulomb and viscous friction. J. Sound Vib. 195, 149–154 (1996)CrossRefGoogle Scholar
  6. 6.
    Liang, J.W., Feeny, B.F.: Identifying Coulomb and viscous friction from free-vibration decrements. Nonlinear Dynam. 16, 337–347 (1998)CrossRefGoogle Scholar
  7. 7.
    Wu, Z., Liu, H., Liu, L., Yuan, D.: Identification of nonlinear viscous damping and Coulomb friction from the free response data. J. Sound Vib. 304, 407–414 (2007)CrossRefGoogle Scholar
  8. 8.
    Rigaud, E., Perret-Liaudet, J., Belin, M., Joly-Pottuz, L., Martin, J.-M.: An original dynamic tribotest to discriminate friction and viscous damping. Tribol. Int. 43, 320–329 (2010)CrossRefGoogle Scholar
  9. 9.
    Majdoub, F., Belin, M., Martin, J.-M., Perret-Liaudet, J., Kano, M., Yoshida, K.: Exploring low friction of lubricated DLC coatings in no-wear conditions with a new relaxation tribometer. Tribol. Int. 65, 278–285 (2013)CrossRefGoogle Scholar
  10. 10.
    Majdoub, F., Martin, J.-M., Belin, M., Perret-Liaudet, J., Iovine, R.: Effect of Temperature on Lubricated Steel/Steel Systems With or Without Fatty Acids Additives Using an Oscillating Dynamic Tribometer. Tribol. Lett. 54, 171–181 (2014)CrossRefGoogle Scholar
  11. 11.
    Belin, M., Arafune, H., Kamijo, T., Perret-Liaudet, J., Morinaga, T., Honma, S., Sato, T.: Low friction, lubricity, and durability of polymer brush coatings, characterized using the relaxation tribometer technique. Lubricants 6, 52 (2018)CrossRefGoogle Scholar
  12. 12.
    Majdoub, F., Perret-Liaudet, J., Belin, M., Martin, J.-M.: Decaying law for the free oscillating response with a pseudo-polynomial friction law: analysis of a superlow lubricated friction test. J. Sound Vib. 348, 263–281 (2015)CrossRefGoogle Scholar
  13. 13.
    Vasko, A.A., Braun, O.M., Marchenko, O.A., Naumovets, A.G.: Magnetic levitation tribometer: a point-contact friction. Tribol. Lett. 66, 74 (2018)CrossRefGoogle Scholar
  14. 14.
    Vakis, A.I., Yastrebov, V.A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., Almqvist, A., Paggi, M., Lee, S., Limbert, G., Molinari, J.F., Anciaux, G., Aghababaei, R., Echeverri Restrepo, S., Papangelo, A., Cammarata, A., Nicolini, P., Putignano, C., Carbone, G., Stupkiewicz, S., Lengiewicz, J., Costagliola, G., Bosia, F., Guarino, R., Pugno, N.M., Müser, M.H., Ciavarella, M.: Modeling and simulation in tribology across scales: an overview. Tribol. Int. 125, 169–199 (2018)CrossRefGoogle Scholar
  15. 15.
    Wu-Bavouzet, F., Cayer-Barrioz, J., Le Bot, A., Brochard-Wyart, F., Bugin, A.: Effect of surface pattern on the adhesive friction of elastomers. Phys. Rev. E 82, 031806 (2010)CrossRefGoogle Scholar
  16. 16.
    Sahli, R., Pallares, G., Ducottet, C., Ben Ali, I.E., Al Akhrass, S., Guibert, M., Scheibert, J.: Evolution of real contact area under shear and the value of static friction of soft materials. Proc. Natl. Acad. Sci. USA 115, 471–476 (2018)CrossRefGoogle Scholar
  17. 17.
    Smerdova, O., Cayer-Barrioz, J., Le Bot, A., Sarbaev, B.: Analytical model and experimental validation of friction laws for composites under low loads. Tribol. Lett. 46, 263–272 (2012)CrossRefGoogle Scholar
  18. 18.
    Chateauminois, A., Fretigny, C., Olanier, L.: Friction and shear fracture of an adhesive contact under torsion. Phys. Rev. E 81, 026106 (2010)CrossRefGoogle Scholar
  19. 19.
    Prevost, A., Scheibert, J., Debrégeas, G.: Probing the micromechanics of a multi-contact interface at the onset of frictional sliding. Eur. Phys. J. E 36, 17 (2013)CrossRefGoogle Scholar
  20. 20.
    Strogatz, S.H.: Nonlinear dynamics and chaos. Westview Press, Cambridge (1994)Google Scholar
  21. 21.
    Nayfeh, A.H.: Perturbation methods. Wiley-VCH, Weinheim (2004)Google Scholar
  22. 22.
    Hamdi, M., Belhaq, M.: Quasi-periodic oscillation envelopes and frequency locking in rapidly vibrated nonlinear systems with time delay. Nonlinear Dynam. 73, 1–15 (2013)CrossRefGoogle Scholar
  23. 23.
    Mergel, J.C., Sahli, R., Scheibert, J., Sauer, R.A.: Continuum contact models for coupled adhesion and friction. J. Adhesion (2018). CrossRefGoogle Scholar
  24. 24.
    Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  25. 25.
    Scheibert, J., Prevost, A., Debrégeas, G., Katzav, E., Adda-Bedia, M.: Stress field at a sliding frictional contact: Experiments and calculations. J. Mech. Phys. Solids 57, 1921–1933 (2009)CrossRefGoogle Scholar
  26. 26.
    Yashima, S., Romero, V., Wandersman, E., Frétigny, C., Chaudhury, M.K., Chateauminois, A., Prevost, A.M.: Normal contact and friction of rubber with model randomly rough surfaces. Soft Matter 11, 871–881 (2015)CrossRefGoogle Scholar
  27. 27.
    Ruina, A.: Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983)CrossRefGoogle Scholar
  28. 28.
    Baumberger, T., Caroli, C.: Solid friction from stick-slip down to pinning and aging. Adv. Phys. 55, 279–348 (2006)CrossRefGoogle Scholar
  29. 29.
    Bar Sinai, Y., Brener, E.A., Bouchbinder, E.: Slow rupture of frictional interfaces. Geophys. Res. Lett. 39, L03308 (2012)CrossRefGoogle Scholar
  30. 30.
    Trømborg, J.K., Sveinsson, H.A., Scheibert, J., Thøgersen, K., Amundsen, D.S., Malthe-Sørenssen, A.: Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces. Proc. Natl. Acad. Sci. USA 111, 8764–8769 (2014)CrossRefGoogle Scholar
  31. 31.
    Thøgersen, K., Trømborg, J.K., Sveinsson, H.A., Malthe-Sørenssen, A., Scheibert, J.: History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework. Phys. Rev. E 89, 052401 (2014)CrossRefGoogle Scholar
  32. 32.
    Hatano, T.: Friction laws from dimensional-analysis point of view. Geophys. J. Int. 202, 2159–2162 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alain Le Bot
    • 1
    Email author
  • Julien Scheibert
    • 1
  • Artem A. Vasko
    • 2
  • Oleg M. Braun
    • 2
  1. 1.Laboratory of Tribology and Dynamics of Systems, CNRS UMR 5513, Ecole Centrale de LyonUniversity of Lyon,EcullyFrance
  2. 2.Institute of Physics, National Academy of Sciences of UkraineKievUkraine

Personalised recommendations