Advertisement

Tribology Letters

, 67:49 | Cite as

Lowering of Friction in Monolayers of Mixed Alkanes

  • A. A. VaskoEmail author
  • V. Ye. Kutsenko
  • A. A. Marchenko
  • O. M. Braun
Original Paper
  • 38 Downloads

Abstract

Molecular structure and tribological properties of monolayers, formed by pure n-tetracosane (C24H50, hereafter C24), n-octatetracontane (C48H98, C48) and their binary mixture on highly oriented pyrolitic graphite (HOPG), were investigated by scanning tunneling microscopy (STM) and magnetic levitation tribometer (MLT) methods. It has been found that monolayers of pure C24 and C48 have typical smectic lamella-like packing with perpendicular orientation of molecules with respect to the lamella direction, while binary mixture C24 + C48 forms nematic phase with only orientational order. Comparative tribological MLT measurements reveal substantial lowering of friction coefficient μ for monolayers of C24 + C48 in contrast to pure C24 and C48. The lowering of friction is explained in terms of incommensurability between alkyl chain and graphite surface.

Keywords

n-Alkane Graphite Self-assembled monolayers Monolayer instability Sliding force Friction coefficient 

Notes

References

  1. 1.
    Bhushan, B., Gupta, B.K.: Handbook of Tribology: Materials, Coatings, and Surface Treatments. McGraw-Hill, New York (1991)Google Scholar
  2. 2.
    McDermott, M.T., Green, J.-B.D., Porter, M.D.: Scanning force microscopic exploration of the lubrication capabilities of n-alkanethiolate monolayers chemisorbed at gold: structural basis of microscopic friction and wear. Langmuir 13(9), 2504–2510 (1997)CrossRefGoogle Scholar
  3. 3.
    Xiao, X., Hu, J., Charych, D.H., Salmeron, M.: Chain length dependence of the frictional properties of alkylsilane molecules studied by atomic force microscopy. Langmuir 12(2), 235–237 (1996)CrossRefGoogle Scholar
  4. 4.
    McGonigal, G.C., Bernhard, R.H., Thomson, D.J.: Imaging alkane layers at the liquid/graphite interface with the scanning tunneling microscope. Appl. Phys. Lett. 57(1), 28 (1990)CrossRefGoogle Scholar
  5. 5.
    Askadskaya, L., Rabe, J.P.: Anisotropic molecular dynamics in the vicinity of order-disorder transitions in organic monolayers. Phys. Rev. Lett. 69, 1395 (1992)CrossRefGoogle Scholar
  6. 6.
    Marchenko, O., Cousty, J.: Molecule length-induced reentrant self-organization of alkanes in monolayers adsorbed on A(111). Phys. Rev. Lett. 84, 5363–5366 (2000)CrossRefGoogle Scholar
  7. 7.
    Marchenko, A., Lukyanets, S., Cousty, J.: Adsorption of alkanes on A(111): possible origin of STM contrast at the liquid/solid interface. Phys. Rev. B 65(4), 045414 (2002)CrossRefGoogle Scholar
  8. 8.
    Kulik, V.S., Marchenko, A.A., Naumovets, A.G., Cousty, J.: Chain length dependence of the frictional properties of N-alkane monolayers self-assembled on gold(111). In: Borisenko, V.E., et al. (eds.) Physics, Chemistry and Application of Nanostructures, pp. 74–77. World Scientific, Minsk (2005)CrossRefGoogle Scholar
  9. 9.
    Marchenko, A., Cousty, J.: “Magic size” effect in the packing of n-alkanes on Au(111): evidence of lowered sliding force for molecules with specific length. Wear 254(10), 941–944 (2003)CrossRefGoogle Scholar
  10. 10.
    McGonigal, G.C., Bernhardt, R.H., Thomson, D.J.: Imaging alkane layers at the liquid/graphite interface with the scanning tunneling microscope. Appl. Phys. Lett. 57(1), 28–30 (1990)CrossRefGoogle Scholar
  11. 11.
    Zhao, M., Peng, J., Deng, K., Yu, A.-F., Hao, Y.-Z., Xie, S.-S., Sun, J.-L.: STM investigation of the dependence of alkane and alkane (C18H38, C19H40) derivatives self-assembly on molecular chemical structure on HOPG surface. Surf. Sci. 602, 1256–1266 (2008)CrossRefGoogle Scholar
  12. 12.
    Chen, Q., Yan, H.-J., Yan, C.-J., Pan, G.-B., Wan, L.-J., Wen, G.-Y., Zhang, D.-Q.: Insight into STM image contrast of n-tetradecane and n-hexadecane molecules on highly oriented pyrolytic graphite. Appl. Surf. Sci. 257, 3243–3247 (2011)CrossRefGoogle Scholar
  13. 13.
    Vasko, A.A., Braun, O.M., Marchenko, O.A., et al.: Magnetic levitation tribometer: a point-contact friction. Tribol. Lett. 66, 74 (2018)CrossRefGoogle Scholar
  14. 14.
    Askadskaya, L., Rabe, J.P.: Anisotropic molecular dynamics in the vicinity of order-disorder transitions in organic monolayers. Phys. Rev. Lett. 69(9), 1395–1398 (1992)CrossRefGoogle Scholar
  15. 15.
    Ilan, B., Florio, G.M., Hybertsen, M.S., Berne, B.J., Flynn, G.W.: Scanning tunneling microscopy images of alkane derivatives on graphite: role of electronic effects. Nano Lett. 8(10), 3160–3165 (2008)CrossRefGoogle Scholar
  16. 16.
    Endo, O., Horikoshi, T., Katsumata, N., Otani, K., Fujishima, T., Goto, H., Minami, K., Akaike, K., Ozaki, H., Sumii, R., et al.: Incommensurate crystalline phase of n-alkane monolayers on graphite (0001). J. Phys. Chem. C 115(13), 5720–5725 (2011)CrossRefGoogle Scholar
  17. 17.
    Cousty, J., Pham, L.V.: Formation of partially demixed two-dimensional solid solutions from binary mixtures of n-alkanes with very different lengths. Phys. Chem. Chem. Phys. 5, 599–603 (2003)CrossRefGoogle Scholar
  18. 18.
    Hibino, M.: Adsorption behaviors of mixed monolayers of n-alkanes at the liquid-solid interface. Langmuir 32(19), 4705–4709 (2016)CrossRefGoogle Scholar
  19. 19.
    Kitaigorodskii, A.I.: Organic chemical crystallography. Consultants Bureau, New York (1961)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of PhysicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations