Advertisement

Tribology Letters

, 67:31 | Cite as

A Fractal Model of Acoustic Emission Signals in Sliding Friction

  • Qiushi Hao
  • Yi ShenEmail author
  • Yan Wang
  • Xin Zhang
Original Paper

Abstract

Acoustic emission (AE) technology has been applied in condition monitoring of mechanical systems. In this paper, in order to deepen theoretical understanding of the relation between AE signals and contact mechanisms, the principle of deformation is unified by a deformation ratio, then a scale-independent AE model of sliding friction is proposed based on the fractal theory. The new model considers a complete process of elastic-plastic deformation. Influences of the sliding velocity and the normal load on the AE signal in different fractal circumstances are specified. By theoretical and experimental comparisons, the effectiveness and feasibility of the proposed model are demonstrated. The work offers a theoretical basis for future studies and applications of AE technology on tribological problems.

Keywords

Acoustic emission Fractal model Rough surface Sliding friction 

List of Symbols

x

Distance (m)

w(x)

The Weierstrass–Mandelbrot function of position x (m)

z(x)

The height of the surface profile at distance x (m)

D

Fractal dimension of a surface profile

G

Fractal roughness parameter (m)

\(\gamma \)

Scaling parameter for the Weierstrass–Mandelbrot function

n

The frequency level of the asperities

\(\phi _n\)

The random phase of level n (rad)

\(S(\omega )\)

The power spectrum

l

Length scale of an asperity or a contact spot (m)

\(\delta \)

Interference or deformation of an asperity (m)

a

Area of a contact spot (m\(^2\))

E

Young’s modulus (N/m\(^{2}\))

\(\nu \)

Poisson’s ratio

r

Radius of asperity curvature (m)

H

Hardness (N/m\(^{2}\))

\(\eta \)

Deformation ratio

\(P(\delta )\)

Load of contact spot of interference \(\delta \) (N)

N

Number of the contact spots

A

Area (m\(^2\))

\(\varDelta \)

Interference or deformation (m)

\(n(\mathrm{{a}})\)

Size-distribution density of contact spots of area a

\(n(\delta )\)

Size-distribution density of contact spots of interference \(\delta \)

W

Energy of the deformed asperities (J)

U

Energy release rate of the deformed asperities (W)

T

Period (s)

R

Radius of the contact surface in the mechanical seal (m)

v

Sliding velocity (m/s)

\(F_{N}\)

The normal load on a surface (N)

\(k_{e}\)

Energy converting rate through transmission

\(k_{m}\)

The gain of AE measurement system

V

Voltage (V)

Subscripts

c

Critical

l

Largest

1

Material 1

2

Material 2

p

Plastic

e

Elastic

r

Real

RMS

Root mean square

AE

Acoustic emission

sum

Summation

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 61771161 and 61601139), China Postdoctoral Science Foundation funded Project (No. 2017M610209), and Shenzhen Science & Technology Program (No. JCYJ20160429115309834).

References

  1. 1.
    Yuan, W., Dong, G., Chin, K., Hua, M.: Tribological assessment of sliding pairs under damped harmonic excitation loading based on on-line monitoring methods. Tribol. Int. 96, 225–236 (2016)CrossRefGoogle Scholar
  2. 2.
    Kattelus, J., Miettinen, J., Lehtovaara, A.: Detection of gear pitting failure progression with on-line particle monitoring. Tribol. Int. 118, 458–464 (2018)CrossRefGoogle Scholar
  3. 3.
    Fan, Y., Gu, F., Ball, A.: Modelling acoustic emissions generated by sliding friction. Wear 268(5–6), 811–815 (2010)CrossRefGoogle Scholar
  4. 4.
    Chung, K.-H., Oh, J.-K., Moon, J.-T., Kim, D.-E.: Particle monitoring method using acoustic emission signal for analysis of slider/disk/particle interaction. Tribol. Int. 37(10), 849–857 (2004)CrossRefGoogle Scholar
  5. 5.
    Sharma, R.B., Parey, A., Tandon, N.: Modelling of acoustic emission generated in involute spur gear pair. J. Sound Vib. 393, 353–373 (2017)CrossRefGoogle Scholar
  6. 6.
    Tan, C.K., Mba, D.: Correlation between acoustic emission activity and asperity contact during meshing of spur gears under partial elastohydrodynamic lubrication. Tribol. Lett. 20(1), 63–67 (2005)CrossRefGoogle Scholar
  7. 7.
    Makkonen, L.: A thermodynamic model of sliding friction. AIP Adv. 2(1), 012179 (2012)CrossRefGoogle Scholar
  8. 8.
    Zhang, X., Cui, Y., Wang, Y., Sun, M., Hu, H.: An improved ae detection method of rail defect based on multi-level anc with vss-lms. Mech. Syst. Signal Process. 99, 420–433 (2018)CrossRefGoogle Scholar
  9. 9.
    Towsyfyan, H., Gu, F., Ball, A.D., Liang, B.: Modelling acoustic emissions generated by tribological behaviour of mechanical seals for condition monitoring and fault detection. Tribol. Int. 125, 46–58 (2018)CrossRefGoogle Scholar
  10. 10.
    Baranov, V., Kudryavtsev, E., Sarychev, G.: Modelling of the parameters of acoustic emission under sliding friction of solids. Wear 202(2), 125–133 (1997)CrossRefGoogle Scholar
  11. 11.
    Hao, Q., Shen, Y., Wang, Y., Zhang, X.: Detection method based on kalman filter for high speed rail defect ae signal on wheel-rail rolling rig. Nondestr. Test. Eval. 33(1), 75–91 (2018)CrossRefGoogle Scholar
  12. 12.
    Hao, Q., Zhang, X., Wang, Y., Shen, Y., Makis, V.: A novel rail defect detection method based on undecimated lifting wavelet packet transform and shannon entropy-improved adaptive line enhancer. J. Sound Vib. 425(7), 208–220 (2018)CrossRefGoogle Scholar
  13. 13.
    Cuadra, J., Vanniamparambil, P., Servansky, D., Bartoli, I., Kontsos, A.: Acoustic emission source modeling using a data-driven approach. J. Sound Vib. 341, 222–236 (2015)CrossRefGoogle Scholar
  14. 14.
    Naber, R., Bahai, H., Jones, B.: A reciprocal band-limited green’s function approach for modelling acoustic emission using the finite element method. J. Sound Vibr. 292(3–5), 802–823 (2006)CrossRefGoogle Scholar
  15. 15.
    Sheng, G., Liu, B.: A theoretical model of slider-disk interaction and ae sensing process for studying interface phenomena and estimating unknown parameters. Tribol. Lett. 6(3–4), 233–239 (1999)CrossRefGoogle Scholar
  16. 16.
    Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84(7), 3617–3624 (1998)CrossRefGoogle Scholar
  17. 17.
    Majumdar, A., Bhushan, B.: Role of fractal geometry in roughness characterization and contact mechanics of surfaces. ASME J. Tribol. 112(2), 205–216 (1990)CrossRefGoogle Scholar
  18. 18.
    Zavarise, G., Borri-Brunetto, M., Paggi, M.: On the resolution dependence of micromechanical contact models. Wear 262(1), 42–54 (2007)CrossRefGoogle Scholar
  19. 19.
    Morag, Y., Etsion, I.: Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces. Wear 262(5–6), 624–629 (2007)CrossRefGoogle Scholar
  20. 20.
    Yuan, Y., Cheng, Y., Liu, K., Gan, L.: A revised majumdar and bushan model of elastoplastic contact between rough surfaces. Appl. Surf. Sci. 425, 1138–1157 (2017)CrossRefGoogle Scholar
  21. 21.
    Hess, M., Popov, VL.: Method of dimensionality reduction in contact mechanics and friction: a user’s handbook. ii. power-law graded materials, Facta Universitatis, Series: Mechanical Engineering 14(3);251–268 (2016)Google Scholar
  22. 22.
    Huo, L., Wang, F., Li, H., Song, G.: A fractal contact theory based model for bolted connection looseness monitoring using piezoceramic transducers. Smart Mater. Struct. 26(10), 104010 (2017)CrossRefGoogle Scholar
  23. 23.
    Vakis, A., Yastrebov, V., Scheibert, J., Nicola, L., Dini, D., Minfray, C., Almqvist, A., Paggi, M., Lee, S., Limbert, G., Molinari, J., Anciaux, G., Aghababaei, R., Restrepo, S.E., Papangelo, A., Cammarata, A., Nicolini, P., Putignano, C., Carbone, G., Stupkiewicz, S., Lengiewicz, J., Costagliola, G., Bosia, F., Guarino, R., Pugno, N., Mser, M., Ciavarella, M.: Modeling and simulation in tribology across scales: an overview. Tribol. Int. 125, 169–199 (2018)CrossRefGoogle Scholar
  24. 24.
    Borri, C., Paggi, M.: Topological characterization of antireflective and hydrophobic rough surfaces: are random process theory and fractal modeling applicable? J. Phys. D: Appl. Phys. 48(4), 045301 (2015)CrossRefGoogle Scholar
  25. 25.
    Lin, C., Makis, V.: Optimal bayesian maintenance policy and early fault detection for a gearbox operating under varying load. J. Vib. Control 22(15), 3312–3325 (2016)CrossRefGoogle Scholar
  26. 26.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and Company, San Francisco (1982)Google Scholar
  27. 27.
    Zhang Dayi, S.F.H.J.M.Y., Ying, X.: Interfacial contact stiffness of fractal rough surfaces, Scientific reportsGoogle Scholar
  28. 28.
    Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 113(1), 1–11 (1991)CrossRefGoogle Scholar
  29. 29.
    Yibo, F.: Condition monitoring of mechanical seals using acoustic emissions, PhD thesis, pp. 155–171 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Control Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Shenzhen Engineering Lab for Medical Intelligent Wireless Ultrasonic Imaging TechnologyHarbin Institute of TechnologyShenzhenChina

Personalised recommendations