Tribology Letters

, 67:29 | Cite as

Reverse Stick-Slip on a Periodic Wedge-Shaped Micrograting

  • Alper Özoğul
  • Stephan Gräf
  • Frank A. Müller
  • Enrico GneccoEmail author
Original Paper


We have investigated the time evolution of sliding friction between colloidal spheres of PMMA (with diameters of 3 μm and 9.6 μm) supported by an AFM cantilever and a SiO2 grating consisting of alternated slopes of ± 55° and flat areas, and periodicity comparable or below the sphere diameters. With the larger sphere we recognize a reproducible ‘reverse stick-slip’, which is explained by mere momentum balance consideration. The friction is proportional to the normal load, as expected for elastic contact with a wedge. With the chosen method, a friction coefficient μ ≈ 0.30 and an interfacial shear strength τ ≈ 0.7 GPa can be estimated with no need of force calibration. This response is very different from the regular stick-slip with the periodicity of the grating, which would be observed if the well-known Prandtl–Tomlinson model for the friction experienced on a periodic potential could be scaled up to the present case.


AFM Stick-Slip Friction Mechanisms Surface Roughness 


  1. 1.
    Medyanik, S.N., Liu, W.K., Sung, I.-H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)CrossRefGoogle Scholar
  2. 2.
    Roth, R., Glatzel, T., Steiner, P., Gnecco, E., Baratoff, A., Meyer, E.: Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Trib. Lett. 39, 63–69 (2010)CrossRefGoogle Scholar
  3. 3.
    Popov, V.L., Gray, J.A.T.: Prandtl–Tomlinson model: history and applications in friction, plasticity, and nanotechnologies. J. Appl. Math. Mech. 92, 683–708 (2012)Google Scholar
  4. 4.
    Tomlinson, G.A.: CVI. A molecular theory of friction. Philos. Mag. 7, 905–939 (1929)CrossRefGoogle Scholar
  5. 5.
    Lantz, M.A., O’Shea, S.J., Welland, M.E., Johnson, K.L.: Atomic-force-microscope study of contact area and friction on NbSe 2. Phys. Rev. B 55, 10776 (1997)CrossRefGoogle Scholar
  6. 6.
    Fajardo, O.Y., Mazo, J.J.: Effects of surface disorder and temperature on atomic friction. Phys. Rev. B 82, 035435 (2010)CrossRefGoogle Scholar
  7. 7.
    Prandtl, L.: Ein Gedankenmodell zur kinetischen theorie der festen Korper. ZAMM 8, 85–106 (1928)CrossRefGoogle Scholar
  8. 8.
    Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)CrossRefGoogle Scholar
  9. 9.
    Villarrubia, J.S.: Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand. Technol. 102, 425 (1997)CrossRefGoogle Scholar
  10. 10.
    Lou, J., Ding, F., Lu, H., Goldman, J., Sun, Y., Yakobson, B.I.: Mesoscale reverse stick-slip nanofriction behavior of vertically aligned multiwalled carbon nanotube superlattices. Appl. Phys. Lett. 92, 203115 (2008)CrossRefGoogle Scholar
  11. 11.
    Maier, S., Sang, Y., Filleter, T., Grant, M., Bennewitz, R., Gnecco, E., Meyer, E.: Fluctuations and jump dynamics in atomic friction experiments. Phys. Rev. B 72, 245418 (2005)CrossRefGoogle Scholar
  12. 12.
    Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)CrossRefGoogle Scholar
  13. 13.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Otto Schott Institute of Materials Research (OSIM)Friedrich Schiller University JenaJenaGermany

Personalised recommendations