Reverse Stick-Slip on a Periodic Wedge-Shaped Micrograting
- 46 Downloads
Abstract
We have investigated the time evolution of sliding friction between colloidal spheres of PMMA (with diameters of 3 μm and 9.6 μm) supported by an AFM cantilever and a SiO2 grating consisting of alternated slopes of ± 55° and flat areas, and periodicity comparable or below the sphere diameters. With the larger sphere we recognize a reproducible ‘reverse stick-slip’, which is explained by mere momentum balance consideration. The friction is proportional to the normal load, as expected for elastic contact with a wedge. With the chosen method, a friction coefficient μ ≈ 0.30 and an interfacial shear strength τ ≈ 0.7 GPa can be estimated with no need of force calibration. This response is very different from the regular stick-slip with the periodicity of the grating, which would be observed if the well-known Prandtl–Tomlinson model for the friction experienced on a periodic potential could be scaled up to the present case.
Keywords
AFM Stick-Slip Friction Mechanisms Surface RoughnessReferences
- 1.Medyanik, S.N., Liu, W.K., Sung, I.-H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)CrossRefGoogle Scholar
- 2.Roth, R., Glatzel, T., Steiner, P., Gnecco, E., Baratoff, A., Meyer, E.: Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Trib. Lett. 39, 63–69 (2010)CrossRefGoogle Scholar
- 3.Popov, V.L., Gray, J.A.T.: Prandtl–Tomlinson model: history and applications in friction, plasticity, and nanotechnologies. J. Appl. Math. Mech. 92, 683–708 (2012)Google Scholar
- 4.Tomlinson, G.A.: CVI. A molecular theory of friction. Philos. Mag. 7, 905–939 (1929)CrossRefGoogle Scholar
- 5.Lantz, M.A., O’Shea, S.J., Welland, M.E., Johnson, K.L.: Atomic-force-microscope study of contact area and friction on NbSe 2. Phys. Rev. B 55, 10776 (1997)CrossRefGoogle Scholar
- 6.Fajardo, O.Y., Mazo, J.J.: Effects of surface disorder and temperature on atomic friction. Phys. Rev. B 82, 035435 (2010)CrossRefGoogle Scholar
- 7.Prandtl, L.: Ein Gedankenmodell zur kinetischen theorie der festen Korper. ZAMM 8, 85–106 (1928)CrossRefGoogle Scholar
- 8.Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)CrossRefGoogle Scholar
- 9.Villarrubia, J.S.: Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand. Technol. 102, 425 (1997)CrossRefGoogle Scholar
- 10.Lou, J., Ding, F., Lu, H., Goldman, J., Sun, Y., Yakobson, B.I.: Mesoscale reverse stick-slip nanofriction behavior of vertically aligned multiwalled carbon nanotube superlattices. Appl. Phys. Lett. 92, 203115 (2008)CrossRefGoogle Scholar
- 11.Maier, S., Sang, Y., Filleter, T., Grant, M., Bennewitz, R., Gnecco, E., Meyer, E.: Fluctuations and jump dynamics in atomic friction experiments. Phys. Rev. B 72, 245418 (2005)CrossRefGoogle Scholar
- 12.Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)CrossRefGoogle Scholar
- 13.Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar