Advertisement

Tribology Letters

, 67:25 | Cite as

Effect of Gas Environment on Mechanochemical Reaction: A Model Study with Tribo-Polymerization of α-Pinene in Inert, Oxidative, and Reductive Gases

  • Xin He
  • Austin Pollock
  • Seong H. KimEmail author
Original Paper
  • 53 Downloads

Abstract

Mechanically induced or assisted chemical reactions readily occur in many tribological interfaces; however, the reactants involved in such reactions are often not well understood. Using the tribo-polymerization of α-pinene as a model system, this study investigated how the surround gas environment influences the surface chemistry of substrate controlling the tribochemical reactivity. Based on the hypothesis that oxidative chemisorption of α-pinene at the sliding solid surface plays critical role, inert (dry N2), oxidative (dry air), and reductive (10% H2 in Ar) gas environments were chosen to alter the degree of surface oxidation in the sliding contact. Comparing the tribo-polymerization yield of α-pinene on two highly reactive substrates (Pd and CuO) and two relatively inert substrates (diamond-like carbon and silicon oxide), it was found that the oxidative gas significantly enhances the tribochemical reactivity of α-pinene. Infrared spectroscopy analysis was employed to confirm that the chemisorption of α-pinene on the surface in the oxidative gas environment plays a critical role. The gas environment was also found to affect the chemical composition and elastic modulus of the tribo-polymer products.

Keywords

Mechanochemistry Vapor-phase lubrication Tribochemistry Boundary lubrication Environment effect 

Notes

Acknowledgements

This work was supported by the National Science Foundation (Grant No. CMMI-1435766).

Supplementary material

11249_2019_1136_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1147 KB)

References

  1. 1.
    Black, A.L., Lenhardt, J.M., Craig, S.L.: From molecular mechanochemistry to stress-responsive materials. J. Mater. Chem. 21, 1655 (2011).  https://doi.org/10.1039/c0jm02636k CrossRefGoogle Scholar
  2. 2.
    Fernández-Bertran, J.F.: Mechanochemistry: an overview. Pure Appl. Chem. 71, 581–586 (1999).  https://doi.org/10.1351/pac199971040581 CrossRefGoogle Scholar
  3. 3.
    James, S.L., Adams, C.J., Bolm, C., Braga, D., Collier, P., Friscic, T., Grepioni, F., Harris, K.D.M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A.G., Parkin, I.P., Shearouse, W.C., Steed, J.W., Waddell, D.C., Friščić, T., Grepioni, F., Harris, K.D.M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A.G., Parkin, I.P., Shearouse, W.C., Steed, J.W., Waddell, D.C.: Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012).  https://doi.org/10.1039/c1cs15171a CrossRefGoogle Scholar
  4. 4.
    Takacs, L.: The historical development of mechanochemistry. Chem. Soc. Rev. 42, 7649–7659 (2013).  https://doi.org/10.1039/c2cs35442j CrossRefGoogle Scholar
  5. 5.
    Baláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J.M., Delogu, F., Dutková, E., Gaffet, E., Gotor, F.J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A., Wieczorek-Ciurowa, K.: Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 42, 7571–7637 (2013).  https://doi.org/10.1039/c3cs35468g CrossRefGoogle Scholar
  6. 6.
    Wang, G.-W.: Mechanochemical organic synthesis. Chem. Soc. Rev. 42, 7668–7700 (2013).  https://doi.org/10.1039/c3cs35526h CrossRefGoogle Scholar
  7. 7.
    Friščić, T., Halasz, I., Beldon, P.J., Belenguer, A.M., Adams, F., Kimber, SaJ., Honkimäki, V., Dinnebier, R.E.: Real-time and in situ monitoring of mechanochemical milling reactions. Nat. Chem. 5, 66–73 (2013).  https://doi.org/10.1038/nchem.1505 CrossRefGoogle Scholar
  8. 8.
    Fischer, T.E.: Tribochemistry. Annu. Rev. Mater. Sci. 18, 303–323 (1988).  https://doi.org/10.1146/annurev.ms.18.080188.001511 CrossRefGoogle Scholar
  9. 9.
    Hsu, S.M., Zhang, J., Yin, Z.: The nature and origin of tribochemistry. Tribol. Lett. 13, 131–139 (2002).  https://doi.org/10.1023/A:1020112901674 CrossRefGoogle Scholar
  10. 10.
    Donnet, C., Belin, M., Augé, J.C., Martin, J.M., Grill, A., Patel, V.: Tribochemistry of diamond-like carbon coatings in various environments. Surf. Coatings Technol. 68–69, 626–631 (1994).  https://doi.org/10.1016/0257-8972(94)90228-3 CrossRefGoogle Scholar
  11. 11.
    Sulem, J., Famin, V., Noda, H.: Thermal decomposition of carbonates in fault zones: slip-weakening and temperature-limiting effects. J. Geophys. Res. 114, 1–14 (2009).  https://doi.org/10.1029/2009JB006576 CrossRefGoogle Scholar
  12. 12.
    Kitamura, M., Mukoyoshi, H., Fulton, P.M., Hirose, T.: Coal maturation by frictional heat during rapid fault slip. Geophys. Res. Lett. 39, 1–3 (2012).  https://doi.org/10.1029/2012GL052316 CrossRefGoogle Scholar
  13. 13.
    Barnette, A.L., Asay, D.B., Ohlhausen, J.A., Dugger, M.T., Kim, S.H.: Tribochemical polymerization of adsorbed n-pentanol on SiO2 during rubbing: when does it occur and is it responsible for effective vapor phase lubrication?. Langmuir. 26, 16299–16304 (2010).  https://doi.org/10.1021/la101481c CrossRefGoogle Scholar
  14. 14.
    Hsu, S.M., Gates, R.S.: Effect of materials on tribochemical reactions between hydrocarbons and surfaces. J. Phys. D Appl. Phys. 39, 3128–3137 (2006).  https://doi.org/10.1088/0022-3727/39/15/S02 CrossRefGoogle Scholar
  15. 15.
    Nakayama, K.: Triboplasma generation and triboluminescence in the inside and the front outside of the sliding contact. Tribol. Lett. 63, 12 (2016).  https://doi.org/10.1007/s11249-016-0700-0 CrossRefGoogle Scholar
  16. 16.
    Su, Y., Yang, Y., Zhang, H., Xie, Y., Wu, Z.: Enhanced photodegradation of methyl orange with TiO2 nanoparticles using a triboelectric nanogenerator. Nanotechnology. 24, 295401 (2013).  https://doi.org/10.1088/0957-4484/24/29/295401 CrossRefGoogle Scholar
  17. 17.
    He, X., Barthel, A.J., Kim, S.H.: Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: tribo-polymers from α-pinene, pinane, and n-decane. Surf. Sci. 648, 352–359 (2016).  https://doi.org/10.1016/j.susc.2016.01.005 CrossRefGoogle Scholar
  18. 18.
    Gosvami, N.N., Bares, J.A., Mangolini, F., Konicek, A.R., Yablon, D.G., Carpick, R.W.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science. 348, 102–106 (2015).  https://doi.org/10.1126/science.1258788 CrossRefGoogle Scholar
  19. 19.
    Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013).  https://doi.org/10.1038/nnano.2012.255 CrossRefGoogle Scholar
  20. 20.
    Adams, H.L., Garvey, M.T., Ramasamy, U.S., Ye, Z., Martini, A., Tysoe, W.T.: Shear induced mechanochemistry: pushing molecules around. J. Phys. Chem. C. 119, 7115–7123 (2015).  https://doi.org/10.1021/jp5121146 CrossRefGoogle Scholar
  21. 21.
    Spikes, H.: Stress-augmented thermal activation: tribology feels the force. Friction. 6, 1–31 (2018).  https://doi.org/10.1007/s40544-018-0201-2 CrossRefGoogle Scholar
  22. 22.
    Spikes, H., Tysoe, W.: On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribol. Lett. 59, 21 (2015).  https://doi.org/10.1007/s11249-015-0544-z CrossRefGoogle Scholar
  23. 23.
    Jacobs, T.D.B., Gotsmann, B., Lantz, M.A., Carpick, R.W.: On the application of transition state theory to atomic-scale wear. Tribol. Lett. 39, 257–271 (2010).  https://doi.org/10.1007/s11249-010-9635-z CrossRefGoogle Scholar
  24. 24.
    Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008).  https://doi.org/10.1103/PhysRevLett.101.125501 CrossRefGoogle Scholar
  25. 25.
    Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63, 1–15 (2016).  https://doi.org/10.1007/s11249-016-0706-7 CrossRefGoogle Scholar
  26. 26.
    Felts, J.R., Oyer, A.J., Hernández, S.C., Whitener, K.E., Robinson, J.T., Walton, S.G., Sheehan, P.E.: Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, 6467 (2015).  https://doi.org/10.1038/ncomms7467 CrossRefGoogle Scholar
  27. 27.
    Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010).  https://doi.org/10.1038/nnano.2010.3 CrossRefGoogle Scholar
  28. 28.
    Beyer, M.K.: The mechanical strength of a covalent bond calculated by density functional theory. J. Chem. Phys. 112, 7307–7312 (2000).  https://doi.org/10.1063/1.481330 CrossRefGoogle Scholar
  29. 29.
    Beyer, M.K., Clausen-Schaumann, H.: Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).  https://doi.org/10.1021/cr030697h CrossRefGoogle Scholar
  30. 30.
    Khajeh, A., He, X., Yeon, J., Kim, S.H., Martini, A.: Mechanochemical association reaction of interfacial molecules driven by shear. Langmuir. 34, 5971–5977 (2018).  https://doi.org/10.1021/acs.langmuir.8b00315 CrossRefGoogle Scholar
  31. 31.
    Yeon, J., He, X., Martini, A., Kim, S.H.: Mechanochemistry at solid surfaces: polymerization of adsorbed molecules by mechanical shear at tribological interfaces. ACS Appl. Mater. Interfaces. 9, 3142–3148 (2017).  https://doi.org/10.1021/acsami.6b14159 CrossRefGoogle Scholar
  32. 32.
    He, X., Kim, S.H.: Surface Chemistry dependence of mechanochemical reaction of adsorbed molecules—an experimental study on tribopolymerization of α-Pinene on metal, metal oxide, and carbon surfaces. Langmuir. 34, 2432–2440 (2018).  https://doi.org/10.1021/acs.langmuir.7b03763 CrossRefGoogle Scholar
  33. 33.
    Barthel, A.J., Kim, S.H.: Lubrication by physisorbed molecules in equilibrium with vapor at ambient condition: effects of molecular structure and substrate chemistry. Langmuir. 30, 6478–6489 (2014).  https://doi.org/10.1021/la501049z CrossRefGoogle Scholar
  34. 34.
    Dante, R.C., Kajdas, C.K.: A review and a fundamental theory of silicon nitride tribochemistry. Wear. 288, 27–38 (2012).  https://doi.org/10.1016/j.wear.2012.03.001 CrossRefGoogle Scholar
  35. 35.
    Archard, J.F.: The temperature of rubbing surfaces. Wear. 2, 438–455 (1959).  https://doi.org/10.1016/0043-1648(59)90159-0 CrossRefGoogle Scholar
  36. 36.
    Barnette, A.L., Asay, D.B., Kim, D., Guyer, B.D., Lim, H., Janik, M.J., Kim, S.H.: Experimental and density functional theory study of the tribochemical wear behavior of SiO2 in humid and alcohol vapor environments. Langmuir. 25, 13052–13061 (2009).  https://doi.org/10.1021/la901919z CrossRefGoogle Scholar
  37. 37.
    Eryilmaz, O.L., Erdemir, A.: Surface analytical investigation of nearly-frictionless carbon films after tests in dry and humid nitrogen. Surf. Coat. Technol. 201, 7401–7407 (2007).  https://doi.org/10.1016/j.surfcoat.2007.02.005 CrossRefGoogle Scholar
  38. 38.
    Erdemir, A.U., Eryilmaz, O.L., Nilufer, I.B., Fenske, G.R.: Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas. Surf. Coatings Technol. 133–134, 448–454 (2000).  https://doi.org/10.1016/S0257-8972(00)00968-3 CrossRefGoogle Scholar
  39. 39.
    Marino, M.J., Hsiao, E., Bradley, L.C., Eryilmaz, O.L., Erdemir, A., Kim, S.H.: Is ultra-low friction needed to prevent wear of diamond-like carbon (DLC)? An alcohol vapor lubrication study for stainless steel/DLC interface. Tribol. Lett. 42, 285–291 (2011).  https://doi.org/10.1007/s11249-011-9771-0 CrossRefGoogle Scholar
  40. 40.
    Al-Azizi, A.A., Eryilmaz, O., Erdemir, A., Kim, S.H.: Effects of nanoscale surface texture and lubricant molecular structure on boundary lubrication in liquid. Langmuir. 29, 13419–13426 (2013).  https://doi.org/10.1021/la402574d CrossRefGoogle Scholar
  41. 41.
    Platzman, I., Brener, R., Haick, H., Tannenbaum, R.: Oxidation of polycrystalline copper thin films at ambient conditions. J. Phys. Chem. C. 112, 1101–1108 (2008).  https://doi.org/10.1021/jp076981k CrossRefGoogle Scholar
  42. 42.
    Barthel, A.J., Luo, J., Hwang, K.S., Lee, J.Y., Kim, S.H.: Boundary lubrication effect of organic residue left on surface after evaporation of organic cleaning solvent. Wear. 350–351, 21–26 (2016).  https://doi.org/10.1016/j.wear.2015.12.010 CrossRefGoogle Scholar
  43. 43.
    Sader, J.E.: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 92, 6262–6274 (2002).  https://doi.org/10.1063/1.1512318 CrossRefGoogle Scholar
  44. 44.
    Sader, J.E., Chon, J.W.M., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999).  https://doi.org/10.1063/1.1150021 CrossRefGoogle Scholar
  45. 45.
    Cai, X., Bangert, H.: Hardness measurements of thin films-determining the critical ratio of depth to thickness using FEM. Thin Solid Films. 264, 59–71 (1995).  https://doi.org/10.1016/0040-6090(95)06569-5 CrossRefGoogle Scholar
  46. 46.
    Al-Azizi, A.A., Eryilmaz, O., Erdemir, A., Kim, S.H.: Surface structure of hydrogenated diamond-like carbon: origin of run-in behavior prior to superlubricious interfacial shear. Langmuir. 31, 1711–1721 (2015).  https://doi.org/10.1021/la504612c CrossRefGoogle Scholar
  47. 47.
    Marino, M.J., Hsiao, E., Chen, Y., Eryilmaz, O.L., Erdemir, A., Kim, S.H.: Understanding run-in behavior of diamond-like carbon friction and preventing diamond-like carbon wear in humid air. Langmuir. 27, 12702–12708 (2011).  https://doi.org/10.1021/la202927v CrossRefGoogle Scholar
  48. 48.
    Erdemir, A., Eryilmaz, O.L., Kim, S.H.: Effect of tribochemistry on lubricity of DLC fi lms in hydrogen ☆. Surf. Coat. Technol. 257, 241–246 (2014).  https://doi.org/10.1016/j.surfcoat.2014.08.002 CrossRefGoogle Scholar
  49. 49.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. A Math. Phys. Eng. Sci. 324, 301–313 (1971).  https://doi.org/10.1098/rspa.1971.0141 CrossRefGoogle Scholar
  50. 50.
    Ebenstein, D.M., Wahl, K.J.: A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves. J. Colloid Interface Sci. 298, 652–662 (2006).  https://doi.org/10.1016/j.jcis.2005.12.062 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials Research InstitutePennsylvania State UniversityUniversity ParkUSA

Personalised recommendations