Advertisement

Tribology Letters

, 67:21 | Cite as

AFM at the Macroscale: Methods to Fabricate and Calibrate Probes for Millinewton Force Measurements

  • N. T. Garabedian
  • H. S. Khare
  • R. W. Carpick
  • D. L. BurrisEmail author
Methods

Abstract

The difficulty in detecting and controlling forces in the gap between the nanoscale and macroscale tribometry regimes has so far limited the application of fundamental atomic-scale insights to practical friction and wear control. This paper describes methods to achieve and quantify millinewton forces measured by atomic force microscopy (AFM) using existing experimental tools. We mounted colloidal microspheres at different points along the span of commercial AFM cantilevers to reduce their effective flexural length from 125 µm to between 21 and 107 µm. The resulting spring constants, based on direct calibration, varied from 100 to 10,000 N/m. Within a commercial AFM (Dimension 3100), these cantilevers produced normal force calibration constants between 0.006 and 0.430 mN/V; i.e., increasing the spring constant by 100 × caused a corresponding increase in the calibration constant but only a negligible increase in V/m sensitivity. We demonstrate these new capabilities by measuring friction between the colloids and single-crystal MoS2 at applied normal forces up to 3.4 mN, which is in the range of existing tribometers and well above the forces typically used in AFM-based measurements. These methods, which make use of well-established procedures and only require a modified AFM cantilever, are intended for use by other researchers as a platform for bridging the gap between nanoscale and macroscale tribometry.

Keywords

High-force AFM Normal force calibration AFM colloidal probes AFM reference cantilevers 

Notes

Acknowledgements

N.T.G and D.L.B. acknowledge financial support from NSF Grant # CMMI-1434435. R.W.C. acknowledges support from NSF Grant # CMMI-1761874.

References

  1. 1.
    Tabor, D.: The area of contact between stationary and between moving surfaces. Doctoral Dissertation. University of Cambridge: (1939)Google Scholar
  2. 2.
    Sawyer, W.G., Argibay, N., Burris, D.L., Krick, B.A.: Mechanistic studies in friction and wear of bulk materials. Annu. Rev. Mater. Res. 44, 395–427 (2014)CrossRefGoogle Scholar
  3. 3.
    Bhushan, B.: Nanotribology and nanomechanics. Wear. 259, 1507–1531 (2005)CrossRefGoogle Scholar
  4. 4.
    Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature. 374, 607–616 (1995)CrossRefGoogle Scholar
  5. 5.
    Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy scratching the surface. Chem. Rev. 97, 1163–1194 (1997)CrossRefGoogle Scholar
  6. 6.
    Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)CrossRefGoogle Scholar
  7. 7.
    Tomlinson, G.A.: A molecular theory of friction. Lond. Edinb. Dublin Philos. Mag. J. Sci. 17, 147–56: (1929)Google Scholar
  8. 8.
    Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. ZAMM J. Appl. Math. Mech. 8, 85–106 (1928)CrossRefGoogle Scholar
  9. 9.
    Bennewitz, R., Gnecco, E., Gyalog, T., Meyer, E.: Atomic friction studies on well-defined surfaces. Tribol. Lett. 10, 51–56 (2001)CrossRefGoogle Scholar
  10. 10.
    Bennewitz, R., Gyalog, T., Guggisberg, M., Bammerlin, M., Meyer, E., Güntherodt, H.J.: Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B 60, R11301–R11304 (1999)CrossRefGoogle Scholar
  11. 11.
    Germann, G.J., Cohen, S.R., Neubauer, G., McClelland, G.M., Seki, H., Coulman, D.: Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces. J. Appl. Phys. 73, 163–167 (1993)CrossRefGoogle Scholar
  12. 12.
    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)CrossRefGoogle Scholar
  13. 13.
    Park, J.Y., Ogletree, D.F., Salmeron, M., Jenks, C.J., Thiel, P.A., Brenner, J., Dubois, J.M.: Friction anisotropy: a unique and intrinsic property of decagonal quasicrystals. J. Mater. Res. 23, 1488–1493 (2008)CrossRefGoogle Scholar
  14. 14.
    Dienwiebel, M., Pradeep, N., Verhoeven, G.S., Zandbergen, H.W., Frenken, J.W.M.: Model experiments of superlubricity of graphite. Surf. Sci. 576, 197–211 (2005)CrossRefGoogle Scholar
  15. 15.
    Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Observation of superlubricity by scanning tunneling microscopy. Phys. Rev. Lett. 78, 1448–1451 (1997)CrossRefGoogle Scholar
  16. 16.
    Brukman, M.J., Gao, G., Nemanich, R.J., Harrison, J.A.: Temperature dependence of single-asperity diamond-diamond friction elucidated using AFM and MD simulations. J. Phys. Chem. C 112, 9358–9369 (2008)CrossRefGoogle Scholar
  17. 17.
    He, M., Szuchmacher Blum, A., Overney, G., Overney, R.M.: Effect of interfacial liquid structuring on the coherence length in nanolubrication. Phys. Rev. Lett. 88(15), 154302 (2002)CrossRefGoogle Scholar
  18. 18.
    Schirmeisen, A., Jansen, L., Hölscher, H., Fuchs, H.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88(12), 123108 (2006)CrossRefGoogle Scholar
  19. 19.
    Zhao, X., Hamilton, M., Sawyer, W.G., Perry, S.S.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)CrossRefGoogle Scholar
  20. 20.
    Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., Güntherodt, H.J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)CrossRefGoogle Scholar
  21. 21.
    Baykara, M.Z., Vazirisereshk, M.R., Martini, A.: Emerging superlubricity: a review of the state of the art and perspectives on future research. Appl. Phys. Rev. 5, 41102 (2018)CrossRefGoogle Scholar
  22. 22.
    Sokoloff, J.B.: Theory of dynamical friction between idealized sliding surfaces. Surf. Sci. 144, 267–272 (1984)CrossRefGoogle Scholar
  23. 23.
    Gnecco, E., Bennewitz, R., Socoliuc, A., Meyer, E.: Friction and wear on the atomic scale. Wear. 254, 859–862 (2003)CrossRefGoogle Scholar
  24. 24.
    Yoon, E.S., Singh, R.A., Oh, H.J., Kong, H.: The effect of contact area on nano/micro-scale friction. Wear. 259, 1424–1431 (2005)CrossRefGoogle Scholar
  25. 25.
    Bhushan, B., Kulkarni, A.V.: Effect of normal load on microscale friction measurements. Thin Solid Films 278, 49–56 (1996)CrossRefGoogle Scholar
  26. 26.
    Nikhil, S.T.: Scale dependence of micro/ nano-friction and adhesion of mems/ nems materials, coatings and lubricants. Nanotechnology. 15, 1561–1570 (2004)CrossRefGoogle Scholar
  27. 27.
    Bhushan, B., Liu, H., Hsu, S.M.: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects. J. Tribol. 126, 583 (2004)CrossRefGoogle Scholar
  28. 28.
    Liu, X.-Z., Ye, Z., Dong, Y., Egberts, P., Carpick, R.W., Martini, A.: Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys. Rev. Lett. 114, 146102 (2015)CrossRefGoogle Scholar
  29. 29.
    Khare, H.S., Lahouij, I., Jackson, A., Feng, G., Chen, Z., Cooper, G.D., Carpick, R.W.: Nanoscale generation of robust solid films from liquid-dispersed nanoparticles via in situ atomic force microscopy: growth kinetics and nanomechanical properties. ACS Appl. Mater. Interfaces. (2018)Google Scholar
  30. 30.
    Kappl, M., Butt, H.-J.: The colloidal probe technique and its application to adhesion force measurements. Part. Part. Syst. Charact. 19, 129–143 (2002)CrossRefGoogle Scholar
  31. 31.
    Kim, M.S., Cho, J.S. et al. Atomic force microscope cantilever calibration device for quantified force metrology at micro- or nano-scale regime: the nano force calibrator (NFC). Metrologia. 43, 389 (2006)CrossRefGoogle Scholar
  32. 32.
    Guide to the Expression of Uncertainty in Measurement, International Standards Organization (ISO). (1993)Google Scholar
  33. 33.
    Hutter, J.L., Bechhoefer, J.: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993)CrossRefGoogle Scholar
  34. 34.
    Butt, H.-J., Jaschke, M.: Calculation of thermal noise in atomic force microscopy. Nanotechnology. 6, 1 (1995)CrossRefGoogle Scholar
  35. 35.
    Zhao, X., Perry, S.S.: The role of water in modifying friction within MoS2 sliding interfaces. ACS Appl. Mater. Interfaces. 2, 1444–1448 (2010)CrossRefGoogle Scholar
  36. 36.
    Khare, H.S., Burris, D.L.: The extended wedge method: atomic force microscope friction calibration for improved tolerance to instrument misalignments, tip offset, and blunt probes. Rev. Sci. Instrum. 84, 055108 (2013)CrossRefGoogle Scholar
  37. 37.
    Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35, 17–23 (2009)CrossRefGoogle Scholar
  38. 38.
    Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298 (1996)CrossRefGoogle Scholar
  39. 39.
    Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the young’s modulus of silicon? J. Microelectromechanical Syst. 19, 229–238 (2010)CrossRefGoogle Scholar
  40. 40.
    Pitenis, A.A., Urueña, J.M., Hormel, T.T., Bhattacharjee, T., Niemi, S.R., Marshall, S.L., Hart, S.M., Schulze, K.D., Angelini, T.E., Sawyer, W.G.: Corneal cell friction: Survival, lubricity, tear films, and mucin production over extended duration in vitro studies. Biotribology. 11, 77–83 (2017)CrossRefGoogle Scholar
  41. 41.
    Marshall, S.L., Schulze, K.D., Hart, S.M., Urueña, J.M., McGhee, E.O., Bennett, A.I., Pitenis, A.A., O’Bryan, C.S., Angelini, T.E., Sawyer, W.G.: Spherically capped membrane probes for low contact pressure tribology. Biotribology. 11, 69–72 (2017)CrossRefGoogle Scholar
  42. 42.
    Bhushan, B., Nosonovsky, M.: Scale effects in friction using strain gradient plasticity and dislocation-assisted sliding (microslip). Acta Mater. 51, 4331–4345 (2003)CrossRefGoogle Scholar
  43. 43.
    Kanaga Karuppiah, K.S., Bruck, A.L., Sundararajan, S.: Evaluation of friction behavior and its contact-area dependence at the micro- and nano-scales. Tribol. Lett. 36, 259 (2009)CrossRefGoogle Scholar
  44. 44.
    Schulze, K.D., Bennett, A.I., Marshall, S., Rowe, K.G., Dunn, A.C.: Real area of contact in a soft transparent interface by particle exclusion microscopy. J. Tribol. 138, 41404–41406 (2016)CrossRefGoogle Scholar
  45. 45.
    Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Sawyer, G.W.: Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology 1–2, 24–29 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of DelawareNewarkUSA
  2. 2.Department of Mechanical Engineering & Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Mechanical EngineeringGonzaga UniversitySpokaneUSA

Personalised recommendations