Advertisement

Tribology Letters

, 67:9 | Cite as

Friction Behavior of Esophageal Mucosa Under Axial and Circumferential Extension

  • C. X. Lin
  • W. Li
  • H. Y. Deng
  • K. Li
  • Z. R. Zhou
Original Paper
  • 46 Downloads

Abstract

There are serious friction damage problems that few studies have focused on when conveying endoscope to the lesion locations. In this paper, the friction behavior between endoscope and esophageal mucosa tissue which stretched in different directions was studied by using a UMT-II Micro-Tribometer. Results show that the friction coefficient and energy dissipation decreased with the increasing circumferential strain, and enhanced with the increasing axial strain. The difference in friction behaviors was related to the structural and mechanical anisotropy of the esophageal tissue. The tearing degree on the mucosal surface gradually increased with the increasing normal force. Lidocaine could effectively reduce the friction dissipation and damage. The results can provide the basic data for safety operation and damage control during endoscopy.

Keywords

Esophageal mucosa Friction behavior Axial extension Circumferential extension Lidocaine mucilage 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51675447 and No. 51290291).

References

  1. 1.
    Cohen, L.B., Wecsler, J.S., Gaetano, J.N., et al.: Endoscopic sedation in the United States: results from a nationwide survey. Am. J. Gastroenterol. 101, 967 (2006)CrossRefGoogle Scholar
  2. 2.
    Gotoda, T., Yamamoto, H., Soetikno, R.M.: Endoscopic submucosal dissection of early gastric cancer. J. Gastroenterol. 41, 929–942 (2006)CrossRefGoogle Scholar
  3. 3.
    Ono, H., Kondo, H., Gotoda, T., et al.: Endoscopic mucosal resection for treatment of early gastric cancer. Gut. 48, 225 (2001)CrossRefGoogle Scholar
  4. 4.
    Adler, D.G., Baron, T.H., Davila, R.E., et al.: ASGE guideline: the role of ERCP in diseases of the biliary tract and the pancreas. Gastrointest. Endosc. 62, 1–8 (2005)CrossRefGoogle Scholar
  5. 5.
    Valdastri, P., Simi, M., Webster, I.I.I.R.J.: Advanced technologies for gastrointestinal endoscopy. Ann. Rev. Biomed. Eng. 14, 397–429 (2012)CrossRefGoogle Scholar
  6. 6.
    Ciuti, G., Menciassi, A., Dario, P.: Capsule endoscopy: from current achievements to open challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011)CrossRefGoogle Scholar
  7. 7.
    Jentschura, D., Raute, M., Winter, J., et al.: Complications in endoscopy of the lower gastrointestinal tract. Surg. Endosc. 8, 672–676 (1994)CrossRefGoogle Scholar
  8. 8.
    Eisen, G.M., Baron, T.H., Dominitz, J.A., et al.: Complications of upper GI endoscopy. Gastrointest. Endosc. 55, 784–793 (2002)CrossRefGoogle Scholar
  9. 9.
    Wang, X., Meng, M.Q.H.: Study of frictional properties of the small intestine for design of active capsule endoscope// ieee/ras-embs international conference on biomedical robotics and biomechatronics. IEEE. 124–129: (1996)Google Scholar
  10. 10.
    Kim, J.S., Sung, I.H., Kim, Y.T.: Experimental investigation of frictional and viscoelastic properties of intestine for micro-endoscope application. Tribol. Lett. 22, 143–149 (2006)CrossRefGoogle Scholar
  11. 11.
    Wang, X., Meng, M.Q.H., Chan, Y.: Physiological factors of the small intestine in design of active capsule endoscopy//Engineering in Medicine and Biology Society, 2005, IEEE-EMBS 2005, 27th Annual International Conference of the. IEEE. 2942–2945: (2006)Google Scholar
  12. 12.
    Wang, X., Meng, M.Q.H.: An experimental study of resistant properties of the small intestine for an active capsule endoscope, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 224, 107–118: (2010)Google Scholar
  13. 13.
    Woo, S.H., Kim, T.W., Cho, J.H.: Stopping mechanism for capsule endoscope using electrical stimulus. Med. Biol. Eng. Comput. 48, 97–102 (2010)CrossRefGoogle Scholar
  14. 14.
    Zhang, C., Liu, H., Li, H.: Experimental investigation of intestinal frictional resistance in the starting process of the capsule robot. Tribol. Int. 70, 11–17 (2014)CrossRefGoogle Scholar
  15. 15.
    Lee, S.H., Kim, Y.T., Yang, S., et al.: An optimal micropatterned end-effecter for enhancing frictional force on large intestinal surface. ACS Appl. Mater. Interf. 2, 1308–1316 (2010)CrossRefGoogle Scholar
  16. 16.
    Accoto, D., Stefanini, C., Phee, L., et al.: Measurements of the frictional properties of the gastrointestinal tract. World Tribol. Congr. 3, 7 (2001)Google Scholar
  17. 17.
    Kim, J.S., Sung, I.H., Kim, Y.T.: Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine. Proc. Inst. Mech. Eng. 221, 837–845: (2007)CrossRefGoogle Scholar
  18. 18.
    Zhang, C., Liu, H., Tan, R., et al.: Modeling of velocity-dependent frictional resistance of a capsule robot inside an intestine. Tribol. Lett. 47, 295–301 (2012)CrossRefGoogle Scholar
  19. 19.
    Woo, S.H., Kim, T.W., Mohy-Ud-Din, Z., et al.: Small intestinal model for electrically propelled capsule endoscopy. Biomed. Eng. Online 10, 108 (2011)CrossRefGoogle Scholar
  20. 20.
    Woods, S.P., Constandinou, T.G.: Wireless capsule endoscope for targeted drug delivery: mechanics and design considerations. IEEE Trans. Biomed. Eng. 60, 945–953 (2013)CrossRefGoogle Scholar
  21. 21.
    Gao, P., Yan, G., Wang, Z., et al.: A robotic endoscope based on minimally invasive locomotion and wireless techniques for human colon. Int J Med Robot Comput Assist Surg. 7, 256–267 (2011)Google Scholar
  22. 22.
    He, S., Yan, G., Gao, J., et al.: Frictional and viscous characteristics of an expanding–extending robotic endoscope in the intestinal environment. Tribol. Lett. 58, 36 (2015)CrossRefGoogle Scholar
  23. 23.
    Yang, W., Fung, T.C., Chian, K.S., et al.: Directional, regional, and layer variations of mechanical properties of esophageal tissue and its interpretation using a structure-based constitutive model. J. Biomech. Eng. 128, 409 (2006)CrossRefGoogle Scholar
  24. 24.
    Natali, A.N., Carniel, E.L., Gregersen, H.: Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med. Eng. Phys. 31, 1056–1062 (2009)CrossRefGoogle Scholar
  25. 25.
    Yang, J., Zhao, J., Liao, D., et al.: Biomechanical properties of the layered oesophagus and its remodelling in experimental type-1 diabetes. J. Biomech. 39, 894–904 (2006)CrossRefGoogle Scholar
  26. 26.
    Yang, W., Fung, T.C., Chian, K.S., et al.: 3D mechanical properties of the layered esophagus: experiment and constitutive model. J. Biomech. Eng. 128, 899–908 (2006)CrossRefGoogle Scholar
  27. 27.
    Lin, C.X., Yu, Q.Y., Wang, J., et al.: Friction behavior between endoscopy and esophageal internal surface. Wear. 376, 272–280 (2017)CrossRefGoogle Scholar
  28. 28.
    Correia, N.T., Ramos, J.M., Saramago, B.J.V., et al.: Estimation of the surface tension of a solid: application to a liquid crystalline polymer. J. Coll. Interf. Sci 189, 361–369 (1997)CrossRefGoogle Scholar
  29. 29.
    Stauffer, C.E.: The measurement of surface tension by the pendant drop technique. J. Phys. Chem. 69, 1933–1938 (1965)CrossRefGoogle Scholar
  30. 30.
    Kwiatkowska, M., Franklin, S.E., Hendriks, C.P.: Friction and deformation behaviour of human skin. Wear 267, 1264–1273 (2009)CrossRefGoogle Scholar
  31. 31.
    Fung, Y.: Biomechanics: mechanical properties of living tissues, 2 edn. Springer, New York (2013)Google Scholar
  32. 32.
    Gregersen, H., Kassab, G.: Biomechanics of the gastrointestinal tract. Neurogastroenterol. Motil. 8, 277–297 (1996)CrossRefGoogle Scholar
  33. 33.
    Stachowiak, G., Batchelor, A.W.. Engineering tribology. Butterworth Heinemann, Oxford (2013)Google Scholar
  34. 34.
    Stupkiewicz, S., Lewandowski, M.J., Lengiewicz, J.: Micromechanical analysis of friction anisotropy in rough elastic contacts. Int. J. Solids Struct. 51, 3931–3943 (2014)CrossRefGoogle Scholar
  35. 35.
    Leyva-Mendivil, M.F., Lengiewicz, J., Page, A., et al.: Skin microstructure is a key contributor to its friction behaviour. Tribol. Lett. 65, 12 (2017)CrossRefGoogle Scholar
  36. 36.
    Derler, S., Huber, R., Feuz, H.P., et al.: Influence of surface microstructure on the sliding friction of plantar skin against hard substrates. Wear 267, 1281–1288 (2009)CrossRefGoogle Scholar
  37. 37.
    Moore, D.F.: The friction and lubrication of elastomers. Pergamon Press, Oxford (1972)Google Scholar
  38. 38.
    Wolfram, L.J.: Friction of skin. JSCC 34, 465 (1983)Google Scholar
  39. 39.
    Hendriks, C.P., Franklin, S.E.: Influence of surface roughness, material and climate conditions on the friction of human skin. Tribol. Lett. 37, 361–373 (2010)CrossRefGoogle Scholar
  40. 40.
    Gefen, A.: How do microclimate factors affect the risk for superficial pressure ulcers: a mathematical modeling study. J. Tissue Viability 20, 81–88 (2011)CrossRefGoogle Scholar
  41. 41.
    Sokolis, D.P., Kefaloyannis, E.M., Kouloukoussa, M., et al.: A structural basis for the aortic stress–strain relation in uniaxial tension. J. Biomech. 39, 1651–1662 (2006)CrossRefGoogle Scholar
  42. 42.
    Vanags, I., Petersons, A., Ose, V., et al.: Biomechanical properties of oesophagus wall under loading. J. Biomech. 36, 1387–1390 (2003)CrossRefGoogle Scholar
  43. 43.
    Derler, S., Gerhardt, L.C., Lenz, A.: Friction of human skin against smooth and rough glass as a function of the contact pressure. Tribol. Int. 42, 1565–1574 (2009)CrossRefGoogle Scholar
  44. 44.
    Tang, W., Ge, S., Zhu, H., et al.: The influence of normal load and sliding speed on frictional properties of skin. J. Bionic Eng. 5, 33–38 (2008)CrossRefGoogle Scholar
  45. 45.
    Tay, B.K., Kim, J., Srinivasan, M.A.: In vivo mechanical behavior of intra-abdominal organs. IEEE Trans. Biomed. Eng. 53, 2129–2138 (2006)CrossRefGoogle Scholar
  46. 46.
    Yang, W., Fung, T.C., Chian, K.S., et al.: Viscoelasticity of esophageal tissue and application of a QLV model. J. Biomech. Eng. 128, 909–916 (2006)CrossRefGoogle Scholar
  47. 47.
    Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett 26, 239–253 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. X. Lin
    • 1
  • W. Li
    • 1
  • H. Y. Deng
    • 2
  • K. Li
    • 1
  • Z. R. Zhou
    • 1
  1. 1.Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of EducationSouthwest Jiaotong UniversityChengduPeople’s Republic of China
  2. 2.Department of General SurgeryChengdu Second People’s HospitalChengduPeople’s Republic of China

Personalised recommendations