Tribology Letters

, 66:119 | Cite as

Numerical Model of the Slithering Snake Locomotion Based on the Friction Anisotropy of the Ventral Skin

  • A. E. FilippovEmail author
  • G. Westhoff
  • A. Kovalev
  • S. N. Gorb
Original Paper


Snakes are able to dynamically change their frictional interactions with a surface by at least three different methods: (1) adjusting the attitude of their scales, (2) redistributing their weight at various points of contact with the substrate, and (3) changing of their winding angles. In the present study, we have observed that snakes change their winding angles, when either friction anisotropy is suppressed by particular roughness of the substrate, or when the external force displacing snake overcomes friction resistance during their locomotion on inclines. In order to understand this behaviour and may be even to predict the specific way of the snake locomotion depending on the interactions between the ventral surface of the snake skin and the substrate, numerical modelling was undertaken. Adaptation of the winding curvature considered in the present study has something to do with an enhancement of friction anisotropy in critical behavioural situations, such as on low-friction substrates or while moving up and down a slope.


Biotribology Friction Anisotropy Snake Locomotion Surface 



This work was partly supported by the Georg Forster Research Award (Alexander von Humboldt Foundation, Germany) to A.E.F. The preparation of this paper was partly supported by the Leverhulme Trust (project CARBTRIB ‘Nanophenomena and functionality of modern carbon-based tribo-coatings’).

Supplementary material

Supplementary material 1 (FLV 5876 KB)

11249_2018_1072_MOESM2_ESM.avi (8.1 mb)
Supplementary material 2 (AVI 8270 KB)
11249_2018_1072_MOESM3_ESM.mp4 (3.1 mb)
Supplementary material 3 (MP4 3149 KB)
11249_2018_1072_MOESM4_ESM.doc (135 kb)
Supplementary material 4 (DOC 135 KB)


  1. 1.
    Abdel-Aal, H.A., Vargiolu, R., Zahouani, H., El Mansori, M.: Preliminary investigation of the frictional response of reptilian shed skin. Wear. 290–291, 51–60 (2012)CrossRefGoogle Scholar
  2. 2.
    Abdel-Aal, H.A.: Surface structure and tribology of legless squamate reptiles. J Mech Behav Biomed Mat. 79, 354–398 (2018). CrossRefGoogle Scholar
  3. 3.
    Alben, S.: Optimizing snake locomotion in the plane. Proc R Soc A. 469, 20130236 (2013). CrossRefGoogle Scholar
  4. 4.
    Baum, M.J., Kovalev, A.K., Michels, J., Gorb, S.N.: Anisotropic friction of the ventral scales in the snake Lampropeltis getula californiae. Tribol Lett. 54(2), 139–150 (2014). CrossRefGoogle Scholar
  5. 5.
    Berthé, R.A., Westhoff, G., Bleckmann, H., Gorb, S.N.: Surface structure and frictional properties of the Amazon tree boa Corallus hortulanus (Squamata, Boidae). J Comp Physiol A. 195, 311–318 (2009)CrossRefGoogle Scholar
  6. 6.
    Bowden, F.P., Tabor, D.: The friction and lubrication of solids. Clarendon Press, Wotton-under-Edge (1986)Google Scholar
  7. 7.
    Chiasson, R.B., Lowe, C.H.: Ultrastructural scale patterns in Nerodia and Thamnophis. J Herpetol. 23, 109–118 (1989)CrossRefGoogle Scholar
  8. 8.
    Filippov, A., Gorb, S.N.: Frictional-anisotropy-based systems in biology: structural diversity and numerical model. Sci Rep. 3, 1240 (2013). CrossRefGoogle Scholar
  9. 9.
    Filippov, A.E., Gorb, S.N.: Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures. Sci Rep. 6, 23539 (2016). CrossRefGoogle Scholar
  10. 10.
    Gans, C.: Slide-pushing: a transitional locomotor method of elongate squamates. Symp Zool Soc Lond. 52, 12–26 (1984)Google Scholar
  11. 11.
    Gower, D.J.: Scale microornamentation of uropeltid snakes. J Morphol. 258, 249–268 (2003)CrossRefGoogle Scholar
  12. 12.
    Hazel, J., Stone, M., Grace, M.S., Tsukruk, V.V.: Nanoscale design of snake skin for reptation locomotions via friction anisotropy. J. Biomech. 32, 477–484 (1999)CrossRefGoogle Scholar
  13. 13.
    Hoge, A.R., Santos, P.S.: Submicroscopic structure of “stratum corneum” of snakes. Science. 118, 410–411 (1953)CrossRefGoogle Scholar
  14. 14.
    Hu, L.D., Nirody, J., Scott, T., Shelley, M.J.: The mechanics of slithering locomotion. Proc Natl Acad Sci USA. 106, 10081–10085 (2009)CrossRefGoogle Scholar
  15. 15.
    Irish, F.J., Williams, E.E., Seling, E.: Scanning electron microscopy of changes in epidermal structure occurring during the shedding cycle in squamate reptiles. J Morphol. 197, 105–126 (1988)CrossRefGoogle Scholar
  16. 16.
    Jayne, B.C.: Kinematics of terrestrial snake locomotion. Copeia. 22, 915–927 (1986)CrossRefGoogle Scholar
  17. 17.
    Maderson, P.F.A.: When? why? and how? Some speculations on the evolution of the vertebrate integument. Am Zool. 12, 159–171 (1972)CrossRefGoogle Scholar
  18. 18.
    Marvi, H., Hu, D.L.: Friction enhancement in concertina locomotion of snakes. J R Soc Interface. 9–76, 3067–3080 (2012)CrossRefGoogle Scholar
  19. 19.
    Picado, C.: Epidermal microornaments of the Crotalinae. Bull Antivenin Inst Am. 4, 104–105 (1931)Google Scholar
  20. 20.
    Price, R.M.: Dorsal snake scale microdermatoglyphics: ecological indicator or taxonomic tool? J Herpetol. 16, 294–306 (1982)CrossRefGoogle Scholar
  21. 21.
    Price, R.M., Kelly, P.: Microdermatoglyphics: basal patterns and transition zones. J Herpetol 23, 244–261 (1989)CrossRefGoogle Scholar
  22. 22.
    Renous, S., Gasc, J.P., Diop, A.: Microstructure of the tegumentary surface of the Squamata (Reptilia) in relation to their spatial position and their locomotion. Fortschr Zool. 30, 487–489 (1985)Google Scholar
  23. 23.
    Scherge, M., Gorb, S.N.: Biological micro- and nanotribology. Springer, New York (2001)CrossRefGoogle Scholar
  24. 24.
    Schmidt, C.V., Gorb, S.N.: Snake scale microstructure: phylogenetic significance and functional adaptations. Schweizerbart Science Publisher, Stuttgart (2012)Google Scholar
  25. 25.
    Wang, X., Osborne, M.T., Alben, S.: Optimizing snake locomotion on an inclined plane. Phys Rev E. 89, 012717 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Functional Morphology and Biomechanics, Zoological InstituteKiel UniversityKielGermany
  2. 2.Donetsk Institute for Physics and EngineeringNational Academy of Sciences of UkraineDonetskUkraine
  3. 3.Tierpark Hagenbeck GGmbH, Tropen-AquariumHamburgGermany

Personalised recommendations