Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Photocatalytic Degradation of the Malachite Green Dye with Simulated Solar Light Using TiO2 Modified with Sn and Eu

Abstract

This work reports on the synthesis of photocatalysts in thin film form of TiO2 modified with Sn, Eu as well as Sn and Eu simultaneously. The obtained films were characterized by X-Ray Photoelectron Spectroscopy, Raman Spectroscopy and Ultraviolet–Visible Spectroscopy, in order to obtain information on their chemical composition, vibrational features and optical properties respectively. Chemical composition reveal that the tin content was close to 4 at.%, whereas the europium content was approximately 1 at.%. Raman results show that the unmodified material is crystalline TiO2 in the anatase phase; the Sn addition promotes the formation of the rutile crystalline phase. Europium incorporation as a novel modifier produces TiO2 in which a mixture of both crystalline phases coexists. Optical measurements reveal that the band gap energy for all samples remains close to 3.4 eV. The photocatalytic activity was evaluated in the degradation reaction of the Malachite Green dye under simulated solar light. The most relevant result is that photocatalysts containing Sn and Eu show higher photocatalytic activity (60% of MG conversion) than the TiO2 thin film (28% of MG conversion). The main objective of this work was to investigate the changes produced in the resulting material due to Sn and Eu incorporation as well as try to correlate such changes with the corresponding catalytic activity in terms of the Malachite Green dye conversion degree.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Srivastava S, Sinha R, Roy D (2004) Aquat Toxicol 66:319–329

  2. 2.

    Chong MN, Jin B, Chow CWK, Saint C (2010) Water Res 44:2997–3027

  3. 3.

    Akpan UG, Hameed BH (2009) J Hazard Mater 170:520–529

  4. 4.

    Chang S, Liu W (2014) Appl Catal B 156–157:466–475

  5. 5.

    Gouvea CAK, Wypych F, Morales SG, Duran N, Nagata N, Peralta-Zamora P (2000) Chemosphere 40:433–440

  6. 6.

    Anthoula C, Papageorgiou NS, Beglitis CL, Pang G, Teobaldi G, Cabailh Q, Chen AJ, Fisher WA, Hofer, Thornton G (2010) Proc Natl Acad Sci USA 107:6 2391–2396

  7. 7.

    Rawal SB, Bera S, Lee D, Jang D, Lee W (2013) Catal Sci Technol 3:1822–1830

  8. 8.

    Batzill M, Diebold U (2005) Prog Surf Sci 79:47–154

  9. 9.

    Ollis DF, Pelizzetti E, Serpone N (1991) Environ Sci Technol 15B:25–29

  10. 10.

    Xu X, Wen S, Mao Q, Feng Y (2019) J Alloy Compd 773:927–933

  11. 11.

    Pérez-Alvarez J, Solís-Casados DA, Romero S, Escobar-Alarcón L (2014) Adv Mater Res 976:212–216

  12. 12.

    Escobar-Alarcón L, Solís-Casados DA, Romero S, Morales-Mendez JG, Haro-Poniatowski E (2014) Appl Phys A 117:31–35

  13. 13.

    Olvera-Rodríguez I, Hernández R, Medel A, Guzmán C, Escobar-Alarcón L, Brillas E, Sirés I, Esquivel K (2019) Sep Purif Technol 224:189–198

  14. 14.

    Pant B, Park M, Park SJ (2019) Coatings 9:613

  15. 15.

    Ahmadi N, Nemati A, Solati-Hashjin M (2014) Mater Sci Semicond Process 26:41–48

  16. 16.

    Solís-Casados D, Escobar-Alarcón L, Fernández M, Valencia F (2013) Fuel 110:17–22

  17. 17.

    Tauc J, Grigorovici R, Vancu A (1966) Phys Status Solidi 15:627

  18. 18.

    Lente G (2015) Deterministic kinetics in chemistry and systems biology Springer, ISBN 978-3-319-15481-7, pp 52–58

  19. 19.

    Difa X, Bei Ch, Shaowen C, Jiaguo Y (2015) Appl Catal B 164:380

  20. 20.

    Lei X, Yongge W, Wan G, Yihang G, Yingna G (2015) Appl Surf Sci 332:682

  21. 21.

    Si-Zhan Wu K, Li W-D, Zhang (2015) Appl Surf Sci 324:324

  22. 22.

    Jovalekic C, Zdujic M, Atanasoska LJ (2009) J Alloys Compds 469:441–444

  23. 23.

    Haro-Poniatowski E, Rodríguez Talavera R, de la Cruz Heredia M, Cano-Corona O, Arroyo-Murillo R (1994) J Mater Res 9:2102

  24. 24.

    Clegg IM, Everall NJ, King B, Melvin H, Norton C (2001) Appl Spectrosc 55:1138–1150

  25. 25.

    Melendres CA, Narayanasamy A, Maroni VA, Siegel RW (1989) J Mater Res 4:1246

  26. 26.

    Guosheng R, Shouliang W, Panpan WJL, Yunyu C, Zhenfei T, Yixing Y, Changhao L, Guosheng S (2014) RSC Adv 4:63408

  27. 27.

    Baltrus JP, Keller MJ (2019) Surf Sci Spectra 26:014001

Download references

Acknowledgements

Authors thanks to SIEA UAEM 4978/2020CIB Project; To COMECyT for the Grant 19PP1614. Thanks to Dr. Uvaldo Hernández Balderas, M en C Alejandra Núñez, M en C Lizbeth Triana, Dra. Melina Tapia and LIA Citlalit Martinez Soto for technical assistance

Author information

Correspondence to D. A. Solís-Casados.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solís-Casados, D.A., Martínez-Peña, J., Hernández-López, S. et al. Photocatalytic Degradation of the Malachite Green Dye with Simulated Solar Light Using TiO2 Modified with Sn and Eu. Top Catal (2020). https://doi.org/10.1007/s11244-020-01240-z

Download citation

Keywords

  • Photocatalysis
  • Sol–gel
  • Thin films
  • TiO2