Monoterpenoid Oximes Hydrogenation Over Platinum Catalysts

  • Yu. S. DemidovaEmail author
  • E. S. Mozhaitsev
  • A. A. Munkuev
  • E. V. Suslov
  • A. A. Saraev
  • K. P. Volcho
  • N. F. Salakhutdinov
  • I. L. Simakova
  • D. Yu. Murzin
Original Paper


Platinum nanoparticles supported on MgO, Al2O3, ZrO2, TiO2 were utilized for monoterpenoid oximes hydrogenation. Monocyclic menthone and carvone oximes synthesized from bio-derived monoterpenoids with a different structure were used to explore the effect of substrate structure on the reaction regularities. The oximes hydrogenation was carried out under hydrogen atmosphere at 100 °C using methanol as a solvent. Platinum catalysts were prepared by the impregnation methods. The catalysts were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray fluorescence spectroscopy, nitrogen physisorption. Hydrogenation of carvone oxime containing a conjugated oxime group and several reducible functional groups resulted in both hydrogenation and deoximation giving 5-isopropyl-2-methylcyclohexanamine and carvomenthone over Pt/Al2O3 and Pt/ZrO2 catalysts. Menthone oxime hydrogenation over Pt/Al2O3 catalysts with an average particle size of 0.8 nm provided the desired menthylamine formation with the selectivity of 90% at complete oxime conversion. Platinum catalysts based on MgO, ZrO2 and TiO2 enhanced menthone oxime deoximation to menthone.


Hydrogenation Carvone oxime Menthone oxime Menthylamine Platinum catalyst Terpene 



The authors are grateful to Dr. E.Yu. Gerasimov (TEM), I.L. Krayevskaya (XRF) and T.Ya. Efimenko (N2 physisorption) for catalysts characterization. The authors acknowledge the Multi-Access Chemical Research Center SB RAS and the Center of Collective Use «National Center of Catalyst Research» of Boreskov Institute of Catalysis for spectral and analytical measurements.


This work was supported by the Russian Foundation for Basic Research Grant No. 18–33-20175 (the synthesis of substances and the catalysts, menthone oxime hydrogenation) and by Ministry of Science and Higher Education of the Russian Federationproject No. AAAA-A17-117041710075–0 (carvone oxime hydrogenation).

Compliance with Ethical Standards

Research Involving Human and Animal Participants

No research involving Human Participants and/or Animals was performed. In the current study accepted principles of ethical and professional conduct have been followed.

Supplementary material

11244_2020_1234_MOESM1_ESM.docx (678 kb)
Supplementary file1 (DOCX 678 kb)


  1. 1.
    Salakhutdinov NF, Volcho KP, Yarovaya OI (2017) Pure Appl Chem 89(8):1105–1118CrossRefGoogle Scholar
  2. 2.
    Demidova YS, Suslov EV, Simakova OA, Simakova IL, Volcho KP, Salakhutdinov NF, Murzin DY (2016) J Mol Catal 420:142–148CrossRefGoogle Scholar
  3. 3.
    Fahlbusch K-G, Hammerschmidt F-J, Panten J, Pickenhagen W, Schatkowski D, Bauer K, Surburg H (2003) Flavors and fragrances. In: Ullmann F (ed) Ullmann’s encyclopedia of industrial chemistry, vol 15. Wiley, Weinheim, pp 73–198Google Scholar
  4. 4.
    Kozlov NG (1982) Chem Nat Compd 18:131–143CrossRefGoogle Scholar
  5. 5.
    Rykowski Z, Cieplik J, Paulus K, Pluta J, Gubrynowicz O (2007) Sci Pharm 75:1–8CrossRefGoogle Scholar
  6. 6.
    Tachibana S, Maegawa Y, Nomura M, Oleo J (2007) Science 56(6):303–307Google Scholar
  7. 7.
    Motherwell WB, Bingham MJ, Pothier J, Six Y (2004) Tetrahedron 60:3231–3241CrossRefGoogle Scholar
  8. 8.
    Page PCB, Rassias GA, Bethell D, Schilling MB (1998) J Org Chem 63:2774–2777CrossRefGoogle Scholar
  9. 9.
    Steinbeck M, Frey GD, Schoeller WW, Herrmann WA (2011) J Organomet Chem 696:3945–3954CrossRefGoogle Scholar
  10. 10.
    Zhou Y, Gong Y (2011) Asymmetr Eur J Org Chem 30:6092–6099CrossRefGoogle Scholar
  11. 11.
    Ortar G, De Petrocellis L, Morera L, Moriello AS, Orlando P, Morera E, Nalli M, Di Marzo V (2010) Bioorg Med Chem Lett 20:2729–2732CrossRefGoogle Scholar
  12. 12.
    Dore A, Asproni B, Scampuddu A, Gessi S, Murineddu G, Cichero E, Fossa P, Merighi S, Bencivenni S, Pinna GA (2016) Bioorg Med Chem 24:5291–5301CrossRefGoogle Scholar
  13. 13.
    Edinger C, Kulisch J, Waldvogel SR (2015) Beilstein J Org Chem 11:294–301CrossRefGoogle Scholar
  14. 14.
    Feltkamp H, Koch F, Thanh TN (1967) Justus Liebigs Ann Chem 707:78–86CrossRefGoogle Scholar
  15. 15.
    Breitner E, Roginski E, Rylander PN (1959) J Chem Soc 1959:2918–2920CrossRefGoogle Scholar
  16. 16.
    Liu Y, Quan Z, He S, Zhao Z, Wang J, Wang B (2019) React Chem Eng 4:1145–1152CrossRefGoogle Scholar
  17. 17.
    Barr TL (1978) J Phys Chem 82:1801–1810CrossRefGoogle Scholar
  18. 18.
    Bernsmeier D, Sachse R, Bernicke M, Schmack R, Kettemann F, Polte J, Kraehnert R (2019) J Catal 369:181–189CrossRefGoogle Scholar
  19. 19.
    Gołąbiewska A, Lisowski W, Jarek M, Nowaczyk G, Zielińska-Jurek A, Zaleska A (2014) Appl Surf Sci 317:1131–1142CrossRefGoogle Scholar
  20. 20.
    Smirnov MY, Vovk EI, Nartova AV, Kalinkin AV, Bukhtiyarov VI (2018) Kinet Catal 59:653–662CrossRefGoogle Scholar
  21. 21.
    Banerjee R, Chen DA, Karakalos S, Piedboeuf MLC, Job N, Regalbuto JF (2018) ACS Appl Nano Mater 1(10):5876–5884CrossRefGoogle Scholar
  22. 22.
    Gallagher JR, Li T, Zhao H, Liu J, Lei Y, Zhang H, Ren Y, Elam JW, Meyer RJ, Winans RE, Miller JT (2014) Catal Sci Technol 4:3053–3063CrossRefGoogle Scholar
  23. 23.
    Tenney SA, He W, Ratliff JS, Mullins DR, Chen DA (2011) Top Catal 54:42–55CrossRefGoogle Scholar
  24. 24.
    Steinrück H-P, Pesty F, Zhang L, Madey TE (1995) Phys Rev B 51:2427–2439CrossRefGoogle Scholar
  25. 25.
    Alexeev OS, Chin SY, Engelhard MH, Ortiz-Soto L, Amiridis MD (2005) J Phys Chem B 109:234330–323443Google Scholar
  26. 26.
    Baker RTK, Tauster SJ, Dumesic JA (1986) Strong metal support interactions. American Chemical Society, Washington DCCrossRefGoogle Scholar
  27. 27.
    Corma A, Serna P, Concepción P, Calvino J (2008) J Am Chem Soc 130:8748–8753CrossRefGoogle Scholar
  28. 28.
    Serna P, Boronat M, Corma A (2011) Top Catal 54:439–446CrossRefGoogle Scholar
  29. 29.
    Corma A, Serna P, Garcia H (2007) J Am Chem Soc 129:6358–6359CrossRefGoogle Scholar
  30. 30.
    Shimizu K, Miyamoto Y, Kawasaki T, Tanji T, Tai Y, Satsuma A (2009) J Phys Chem 113:17803–17810Google Scholar
  31. 31.
    Arai M, Takada Y, Nishiyama Y (1998) J Phys Chem B 102:1968–1973CrossRefGoogle Scholar
  32. 32.
    Vannice MA, Sen B (1989) J Catal 115:65–78CrossRefGoogle Scholar
  33. 33.
    Shimizu K, Onodera W, Touchy AS, Siddiki SMAH, Toyao T, Kon K (2016) Chem Select 4:736–740Google Scholar
  34. 34.
    Lara P, Philippot K (2004) Catal Sci Technol 4:2445–2465CrossRefGoogle Scholar
  35. 35.
    Boronat M, Corma A (2010) Langmuir 26(21):16607–16614CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Yu. S. Demidova
    • 1
    • 2
    Email author
  • E. S. Mozhaitsev
    • 3
  • A. A. Munkuev
    • 3
  • E. V. Suslov
    • 3
  • A. A. Saraev
    • 1
    • 2
  • K. P. Volcho
    • 2
    • 3
  • N. F. Salakhutdinov
    • 2
    • 3
  • I. L. Simakova
    • 1
  • D. Yu. Murzin
    • 4
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Novosibirsk Institute of Organic ChemistryNovosibirskRussia
  4. 4.Process Chemistry CentreÅbo Akademi UniversityTurkuFinland

Personalised recommendations