Advertisement

Partial Oxidation of Dimethoxymethane to Syngas Over Supported Noble Metal Catalysts

  • S. D. BadmaevEmail author
  • N. O. Akhmetov
  • V. A. Sobyanin
Original Paper
  • 63 Downloads

Abstract

Catalytic partial oxidation (PO) of dimethoxymethane (DMM) to syngas was investigated in a fixed-bed continuous flow reactor under ambient pressure and at 250–500 °C over Pt-, Rh- and Ru-supported on Ce0.75Zr0.25O2–δ catalysts. The Pt catalyst was found to be the most active and selective. It provided complete conversion of DMM to gas mixture containing ˃ 60 vol% of H2 and CO at 400 °C, GHSV = 10,000 h−1 using a reaction mixture: DMM:O2:N2 = 28.6:14.3:57.1 (vol%).

Keywords

Dimethoxymethane Partial oxidation Syngas production Noble metal catalyst Pt SOFC 

Notes

Acknowledgements

This work was supported by Ministry of Science and Higher Education of the Russian Federation (Project No. AAAA-A17-117041710088-0).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sun R, Delidovich I, Palkovits R (2019) Dimethoxymethane as a cleaner synthetic fuel: synthetic methods, catalysts, and reaction mechanism. ACS Catal 9:1298–1318CrossRefGoogle Scholar
  2. 2.
    Kaichev VV, Popova GY, Chesalov YA, Saraev AA, Zemlyanov DY, Beloshapkin SA, Knop-Gericke A, Schlögl R, Andrushkevich TV, Bukhtiyarov VI (2014) Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst. J Catal 311:59–70CrossRefGoogle Scholar
  3. 3.
    Sun Q, Auroux A, Shen J (2006) Surface acidity of niobium phosphate and steam reforming of dimethoxymethane over CuZnO/Al2O3–NbP complex catalysts. J Catal 244:1–9CrossRefGoogle Scholar
  4. 4.
    Fu Y, Shen J (2007) Production of hydrogen by catalytic reforming of dimethoxymethane over bifunctional catalysts. J Catal 248:101–110CrossRefGoogle Scholar
  5. 5.
    Shen H, Fu Y, Sun Q, Zuo S, Auroux A, Shen J (2008) High surface area carbons as acidic components with Cu–ZnO/Al2O3 for the reforming of dimethoxymethane. Catal Comm 9:801–806CrossRefGoogle Scholar
  6. 6.
    Badmaev SD, Pechenkin AA, Belyaev VD, Venyaminov SA, Snytnikov PV, Sobyanin VA (2013) Steam reforming of dimethoxymethane to hydrogen-rich gas for fuel cell feeding application. Doklady Phys Chem 452:251–253CrossRefGoogle Scholar
  7. 7.
    Pechenkin AA, Badmaev SD, Belyaev VD, Sobyanin VA (2015) Performance of bifunctional CuO–CeO2/γ-Al2O3 catalyst in dimethoxymethane steam reforming to hydrogen-rich gas for fuel cell feeding. Appl Catal B166–167:535–543CrossRefGoogle Scholar
  8. 8.
    Badmaev SD, Pechenkin AA, Belyaev VD, Sobyanin VA (2015) Hydrogen production by steam reforming of dimethoxymethane over bifunctional CuO-ZnO/γ-Al2O3 catalyst. Int J Hydrog Energy 40:14052–14057CrossRefGoogle Scholar
  9. 9.
    Pechenkin AA, Badmaev SD, Belyaev VD, Paukshtis EA, Stonkus OA, Sobyanin VA (2017) Steam reforming of dimethoxymethane, methanol and dimethyl ether on CuO–ZnO/γ-Al2O3 catalyst. Kinet Catal 58:577–584CrossRefGoogle Scholar
  10. 10.
    Thattarathody R, Sheintuch M (2019) Product composition and kinetics of methylal decomposition on alumina-supported Pt, Ni, and Rh catalysts. Ind Eng Chem Res 58(27):11902–11909CrossRefGoogle Scholar
  11. 11.
    Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334:935–939CrossRefGoogle Scholar
  12. 12.
    Lan SR, Humphreys J, Du D, Xu W, Wang H, Tao S (2018) Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renew Sust Energ Rev 82:761–780CrossRefGoogle Scholar
  13. 13.
    Navarro RM, Pena MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991CrossRefGoogle Scholar
  14. 14.
    Chen Y, Shao Z, Xu N (2008) Partial oxidation of dimethyl ether to H2/syngas over supported Pt catalyst. J Nat Gas Chem 17:75–80CrossRefGoogle Scholar
  15. 15.
    Shoynkhorova TB, Simonov PA, Potemkin DI, Snytnikov PV, Belyaev VD, Ishchenko AV, Svintsitskiy DA, Sobyanin VA (2018) Highly dispersed Rh-, Pt-, Ru/Ce0.75Zr0.25O2–δ catalysts prepared by sorption-hydrolytic deposition for diesel fuel reforming to syngas. Appl Catal B 237:237–244CrossRefGoogle Scholar
  16. 16.
    Panagiotopoulou P, Kondarides DI, Verykios XE (2008) Selective methanation of CO over supported noble metal catalysts: effects of the nature of the metallic phase on catalytic performance. Appl Catal A 344:45–54CrossRefGoogle Scholar
  17. 17.
    Yeung CMY, Yu KMK, Fu QJ, Thompsett D, Petch MI, Tsang SC (2005) Engineering Pt in ceria for a maximum metal−support interaction in catalysis. J Am Chem Soc 127:18010–18011CrossRefGoogle Scholar
  18. 18.
    Celik FE, Kim T-J, Mlinar AN, Bell AT (2010) An investigation into the mechanism and kinetics of dimethoxymethane carbonylation over FAU and MFI zeolites. J Catal 274:150–162CrossRefGoogle Scholar
  19. 19.
    Solymosi F, Cserenyi J, Ovari L (1997) Decomposition and oxidation of dimethyl ether on Rh catalysts. J Catal 171:476–484CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. D. Badmaev
    • 1
    • 2
    Email author
  • N. O. Akhmetov
    • 1
  • V. A. Sobyanin
    • 1
    • 2
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations