Advertisement

Theoretical and FTIR Investigations of the Acetonitrile Hydrogenation Pathways on Platinum

  • Lautaro Vogt
  • Erica Schulte
  • Sebastián Collins
  • Paola QuainoEmail author
Original Paper
  • 20 Downloads

Abstract

The hydrogenation reaction of acetonitrile adsorbed on a platinum surface to produce amines has been investigated by theoretical and in situ infrared studies. An energetic, kinetics and vibrational analysis have been performed to unravel the elementary steps of the reaction and to clarify the mechanism. The comparison with the experiments allows us to identify an imine as a crucial intermediate for this reaction.

Keywords

DFT In situ FTIR Nitrile hydrogenantion Platinum 

Notes

Acknowledgements

The authors acknowledge the financial support from ANPCyT PICT-2014-1084 and PICT-2014-0497, PIP-CONICET-2015-086CO and ASACTEI grant 00010-18-2014. LV thanks UNL for the granted fellowship. P.Q, E.S and S.C thank CONICET for continuous support.

Supplementary material

11244_2019_1194_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2398 kb)

References

  1. 1.
    Henkel KD (2007) Ullmann’s encyclopedia of industrial chemistry, vol 2, 7th edn. Wiley, New YorkGoogle Scholar
  2. 2.
    De Bellefon C, Fouilloux P (1994) Homogeneous and heterogeneous hydrogenation of nitriles in a liquid phase: chemical, mechanistic, and catalytic aspects. Catal Rev 36(3):459–506Google Scholar
  3. 3.
    Sabatier P, Senderens JB (1909) C R Acad Sci 140:1553Google Scholar
  4. 4.
    Braun JV, Blessing G, Zobel F (1923) Katalytische Hydrierungen unter Druck bei Gegenwart von Nickelsalzen, VI: Nitrile. Berichte der deutschen chemischen Gesellschaft (A and B Series) 56(8):1988–2001Google Scholar
  5. 5.
    Greenfield H (1967) Catalytic hydrogenation of butyronitrile. Ind Eng Chem Prod Res Dev 6(2):142–144Google Scholar
  6. 6.
    Huang Y, Sachtler WM (1999) On the mechanism of catalytic hydrogenation of nitriles to amines over supported metal catalysts. Appl Catal A 182(2):365–378Google Scholar
  7. 7.
    Huang Y, Sachtler WM (1999) Catalytic hydrogenation of nitriles over supported mono-and bimetallic catalysts. J Catal 188(1):215–225Google Scholar
  8. 8.
    Schärringer P, Müller TE, Lercher JA (2008) Investigations into the mechanism of the liquid-phase hydrogenation of nitriles over Raney-Co catalysts. J Catal 253(1):167–179Google Scholar
  9. 9.
    Schärringer P, Müller TE, Jentys A, Lercher JA (2009) Identification of reaction intermediates during hydrogenation of CD3CN on Raney-Co. J Catal 263(1):34–41Google Scholar
  10. 10.
    Huang Y, Sachtler WM (1999) Concerted reaction mechanism in deuteration and H/D exchange of nitriles over transition metals. J Catal 184(1):247–261Google Scholar
  11. 11.
    Huang Y, Sachtler WM (2000) Intermolecular hydrogen transfer in nitrile hydrogenation over transition metal catalysts. J Catal 190(1):69–74Google Scholar
  12. 12.
    Huang Y, Sachtler WM (1998) H/D exchange of amines and acetonitrile over transition metal catalysts. J Phys Chem B 102(34):6558–6565Google Scholar
  13. 13.
    Ortiz-Hernandez I, Williams CT (2007) In situ studies of butyronitrile adsorption and hydrogenation on Pt/Al2O3 using attenuated total reflection infrared spectroscopy. Langmuir 23(6):3172–3178Google Scholar
  14. 14.
    Segobia DJ, Trasarti AF, Apesteguía CR (2012) Hydrogenation of nitriles to primary amines on metal-supported catalysts: highly selective conversion of butyronitrile to n-butylamine. Appl Catal A 445:69–75Google Scholar
  15. 15.
    Bigot B, Delbecq F, Milet A, Peuch VH (1996) Nitriles and hydrogen on a nickel catalyst: theoretical evidence of a process competing with the total hydrogenation reaction. J Catal 159(2):383–393Google Scholar
  16. 16.
    Carrión MC, Manzano BR, Jalón FA, Fuentes-Perujo I, Maireles-Torres P, Rodríguez-Castellón E, Jiménez-López A (2005) Gas-phase hydrogenation of acetonitrile over Pt and Pt–Pd supported on mesoporous solids: influence of the metallic precursor. Appl Catal A 288(1–2):34–42Google Scholar
  17. 17.
    Barrault J, Pouilloux Y (1997) Synthesis of fatty amines. Selectivity control in presence of multifunctional catalysts. Catal Today 37(2):137–153Google Scholar
  18. 18.
    Ortiz-Hernandez I, Owens DJ, Strunk MR, Williams CT (2006) Multivariate analysis of ATR–IR spectroscopic data: applications to the solid–liquid catalytic interface. Langmuir 22(6):2629–2639Google Scholar
  19. 19.
    Ortiz-Hernandez I, Williams CT (2003) In situ investigation of solid–liquid catalytic interfaces by attenuated total reflection infrared spectroscopy. Langmuir 19(7):2956–2962Google Scholar
  20. 20.
    Bigot B, Delbecq F, Milet A, Peuch VH (1996) Nitriles and hydrogen on a nickel catalyst: theoretical evidence of a process competing with the total hydrogenation reaction. J Catal 159(2):383–393Google Scholar
  21. 21.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169Google Scholar
  22. 22.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev b 59(3):1758Google Scholar
  23. 23.
    Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49(23):16223Google Scholar
  24. 24.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953Google Scholar
  25. 25.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78(7):1396Google Scholar
  26. 26.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865Google Scholar
  27. 27.
    Kittel C (1997) Introducción a la física del estado sólido. Edición en español, Editorial Reverté, S.A.Google Scholar
  28. 28.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188Google Scholar
  29. 29.
    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904Google Scholar
  30. 30.
    Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985Google Scholar
  31. 31.
    Aguirre A, Berli CL, Collins SE (2017) ATR-FTIR spectrokinetic analysis of the CO adsorption and oxidation at water/platinum interface. Catal Today 283:127–133Google Scholar
  32. 32.
    Markovits A, Minot C (2003) Theoretical study of the acetonitrile flip-flop with the electric field orientation: adsorption on a Pt (111) electrode surface. Catal Lett 91(3–4):225–234Google Scholar
  33. 33.
    Pašti IA, Marković A, Gavrilov N, Mentus SV (2016) Adsorption of acetonitrile on platinum and its effects on oxygen reduction reaction in acidic aqueous solutions—combined theoretical and experimental study. Electrocatalysis 7(3):235–248Google Scholar
  34. 34.
    Shayeghi A, Krähling S, Hörtz P, Johnston RL, Heard CJ, Schäfer R (2017) Adsorption of acetonitrile, benzene, and benzonitrile on Pt (111): single crystal adsorption calorimetry and density functional theory. J Phys Chem C 121(39):21354–21363Google Scholar
  35. 35.
    Morrison R, Boyd R (1998) Química orgánica, 5th edn. New York University, PearsonGoogle Scholar
  36. 36.
    Marzocchi MP, Dobos S (1974) Infrared spectra and crystal structure of CH3CN and CD3CN. Polarization and intensity measurements. Spectrochim Acta Part A 30(7):1437–1444Google Scholar
  37. 37.
    Busca G, Montanari T, Bevilacqua M, Finocchio E (2008) Removal and recovery of nitriles from gaseous streams: an IR study of acetonitrile adsorption on and desorption from inorganic solids. Colloids Surf A 320(1–3):205–212Google Scholar
  38. 38.
    Marinković NS, Hecht M, Loring JS, Fawcett WR (1996) A SNIFTIRS study of the diffuse double layer at single crystal platinum electrodes in acetonitrile. Electrochim Acta 41(5):641–651Google Scholar
  39. 39.
    Sexton BA, Avery NR (1983) Coordination of acetonitrile (CH3CN) to platinum (111): evidence for an η2 (C, N) species. Surf Sci 129(1):21–36Google Scholar
  40. 40.
    Hubbard AT, Cao EY, Stern DA (1994) Surface analysis of electrodes by ultra-high vacuum techniques: acetonitrile solvent chemisorption at Pt (111). Electrochim Acta 39(8–9):1007–1014Google Scholar
  41. 41.
    Morin S, Conway BE, Edens GJ, Weaver MJ (1997) The reactive chemisorption of acetonitrile on Pt (111) and Pt (100) electrodes as examined by in situ infrared spectroscopy. J Electroanal Chem 421(1–2):213–220Google Scholar
  42. 42.
    Bagal DB, Bhanage BM (2015) Recent advances in transition metal-catalyzed hydrogenation of nitriles. Adv Synth Catal 357(5):883–900Google Scholar
  43. 43.
    Zerecero-Silva P, Jimenez-Solar I, Crestani MG, Arévalo A, Barrios-Francisco R, García JJ (2009) Catalytic hydrogenation of aromatic nitriles and dinitriles with nickel compounds. Appl Catal A 363(1–2):230–234Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Ingeniería QuímicaUniversidad Nacional del LitoralSanta FeArgentina
  2. 2.Instituto de Química Aplicada del Litoral (IQAL)Universidad Nacional del Litoral and CONICETSanta FeArgentina
  3. 3.Instituto de Desarrollo Tecnológico para la Industria Química (INTEC)Universidad Nacional del Litoral and CONICETSanta FeArgentina

Personalised recommendations