Advertisement

(Trans)acetalization Reactions for the Synthesis of Oligomeric Oxymethylene Dialkyl Ethers Catalyzed by Zeolite BEA25

  • Philipp Haltenort
  • Ludger Lautenschütz
  • Ulrich ArnoldEmail author
  • Jörg Sauer
Original Article
  • 33 Downloads

Abstract

Oligomeric oxymethylene dimethyl ethers (DMEs; OMDMEn) are acetals of the type CH3O(CH2O)nCH3 with a high oxygen content and without carbon–carbon bonds in the molecular structure. Therefore, formation of soot and NOx emissions is largely suppressed during combustion. Oligomers with n = 3–5 exhibit properties similar to conventional diesel fuel and this stimulated extensive research in this field. Reactions of OMDME1, the corresponding ethyl derivative OMDEE1 and dimethyl ether (DME) with trioxane have been carried out employing zeolite BEA25 as acidic catalyst. Thus, oligomer mixtures with n = 1–5 are obtained and very small amounts of higher oligomers are also formed. OMDMEn- or OMDEEn-forming reactions from the starting materials take place as well as subsequent transacetalization reactions which lead usually to a product distribution according to a Schulz–Flory distribution. Several transacetalization reactions have been studied, e.g. reactions of OMDME1 with OMDME3 and OMDEE1 with OMDEE3, which lead to the typical mixtures with n = 1–5. Reactions of OMDME1 with OMDEE1 yielded ethoxymethoxymethane, i.e. the acetal with mixed end groups. This allows for the tuning of oligomer mixtures and adjustment of properties according to the required demands of the respective application. Regarding DME as starting compound, the transacetalization reaction with OMDME3 yielded only small amounts of OMDME1–5 while the reaction of DME with trioxane yielded considerable amounts of the oligomers. The reaction is comparatively slow enabling a kinetic control of the oligomer distribution which exhibits an elevated selectivity for the desired OMDME3–5 fraction in the beginning of the reaction.

Keywords

Oxymethylene ethers Diesel fuels Renewable resources Acetalization reactions Zeolite catalyst Dimethyl ether 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the Bundesministerium für Ernährung und Landwirtschaft (BMEL)/Fachagentur Nachwachsende Rohstoffe (FNR) within the Joint Research Project Oxymethylene Ethers (OME): Eco-friendly Diesel Additives from Renewables (FKZ 22403814). We also thank Zeolyst International for providing catalysts.

References

  1. 1.
    Hackbarth K, Haltenort P, Arnold U, Sauer J (2018) Recent progress in the production, application and evaluation of oxymethylene ethers. Chem Ing Tech 90(10):1520–1528.  https://doi.org/10.1002/cite.201800068 CrossRefGoogle Scholar
  2. 2.
    Baranowski CJ, Bahmanpour AM, Kröcher O (2017) Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review. Appl Catal B 217:407–420.  https://doi.org/10.1016/j.apcatb.2017.06.007 CrossRefGoogle Scholar
  3. 3.
    Bhatelia T, Lee WJ, Samanta C, Patel J, Bordoloi A (2017) Processes for the production of oxymethylene ethers: promising synthetic diesel additives. Asia–Pac J Chem Eng 12:827–837.  https://doi.org/10.1002/apj.2119 Google Scholar
  4. 4.
    Münz M, Mokros A, Töpfer D, Beidl C (2018) OME—assessment of particle emissions in real driving conditions. MTZ Worldw 79(3):16–21.  https://doi.org/10.1007/s38313-017-0185-8 CrossRefGoogle Scholar
  5. 5.
    Langhorst T, Toedter O, Koch T, Niethammer B, Arnold U, Sauer J (2018) Investigations on spark and corona ignition of oxymethylene ether-1 and dimethyl carbonate blends with gasoline by high-speed evaluation of OH* chemiluminescence. SAE Int J Fuels Lubr 11(1):1–15.  https://doi.org/10.4271/04-11-01-0001 CrossRefGoogle Scholar
  6. 6.
    Härtl M, Gaukel K, Pélerin D, Wachtmeister G (2017) Oxymethylene ether as potentially CO2-neutral fuel for clean diesel engines. Part 1: engine testing. MTZ Worldw 78(2):52–59.  https://doi.org/10.1007/s38313-016-0163-6 CrossRefGoogle Scholar
  7. 7.
    Jacob E, Maus W (2017) Oxymethylene ether as potentially carbon-neutral fuel for clean diesel engines. Part 2: compliance with the sustainability requirement. MTZ Worldw 78(3):52–57.  https://doi.org/10.1007/s38313-017-0002-4 CrossRefGoogle Scholar
  8. 8.
    Iannuzzi SE, Barro C, Boulouchos K, Burger J (2017) POMDME-diesel blends: evaluation of performance and exhaust emissions in a single cylinder heavy-duty diesel engine. Fuel 203:57–67.  https://doi.org/10.1016/j.fuel.2017.04.089 CrossRefGoogle Scholar
  9. 9.
    Omari A, Heuser B, Pischinger S (2017) Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel 209:232–237.  https://doi.org/10.1016/j.fuel.2017.07.107 CrossRefGoogle Scholar
  10. 10.
    Liu J, Wang H, Li Y, Zheng Z, Xue Z, Shang H, Yao M (2016) Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine. Fuel 177:206–216.  https://doi.org/10.1016/j.fuel.2016.03.019 CrossRefGoogle Scholar
  11. 11.
    Deutsch D, Oestreich D, Lautenschütz L, Haltenort P, Arnold U, Sauer J (2017) High purity oligomeric oxymethylene ethers as diesel fuels. Chem Ing Tech 89:486–489.  https://doi.org/10.1002/cite.201600158 CrossRefGoogle Scholar
  12. 12.
    Lautenschütz L, Oestreich D, Seidenspinner P, Arnold U, Dinjus E, Sauer J (2016) Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers. Fuel 173:129–137.  https://doi.org/10.1016/j.fuel.2016.01.060 CrossRefGoogle Scholar
  13. 13.
    Lautenschütz L, Oestreich D, Seidenspinner P, Arnold U, Dinjus E, Sauer J (2017) Corrigendum to “Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers” [Fuel 173 (2016) 129–137]. Fuel 209:812.  https://doi.org/10.1016/j.fuel.2017.07.083 CrossRefGoogle Scholar
  14. 14.
    Lumpp B, Rothe D, Pastötter C, Lämmermann R, Jacob E (2011) Oxymethylene ethers as diesel fuel additives of the future. MTZ Worldw 72(3):34–38.  https://doi.org/10.1365/s38313-011-0027-z CrossRefGoogle Scholar
  15. 15.
    Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J (2018) The development of the production cost of oxymethylene ethers as diesel additives from biomass. Biofuels Bioprod Biorefin 12(4):694–710.  https://doi.org/10.1002/bbb.1887 CrossRefGoogle Scholar
  16. 16.
    Mahbub N, Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J (2017) A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel additive. J Clean Prod 165:1249–1262.  https://doi.org/10.1016/j.jclepro.2017.07.178 CrossRefGoogle Scholar
  17. 17.
    Zhang X, Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J (2016) An optimized process design for oxymethylene ether production from woody-biomass-derived syngas. Biomass Bioenergy 90:7–14.  https://doi.org/10.1016/j.biombioe.2016.03.032 CrossRefGoogle Scholar
  18. 18.
    Schmitz N, Homberg F, Berje J, Burger J, Hasse H (2015) Chemical equilibrium of the synthesis of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions. Ind Eng Chem Res 54(25):6409–6417.  https://doi.org/10.1021/acs.iecr.5b01148 CrossRefGoogle Scholar
  19. 19.
    Schmitz N, Burger J, Hasse H (2015) Reaction kinetics of the formation of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions. Ind Eng Chem Res 54(50):12553–12560.  https://doi.org/10.1021/acs.iecr.5b04046 CrossRefGoogle Scholar
  20. 20.
    Schmitz N, Breitkreuz CF, Ströfer E, Burger J, Hasse H (2018) Vapor–liquid equilibrium and distillation of mixtures containing formaldehdye and poly(oxymethylene) dimethyl ethers. Chem Eng Process Process Intensif 131:116–124.  https://doi.org/10.1016/j.cep.2018.06.012 CrossRefGoogle Scholar
  21. 21.
    Schmitz N, Breitkreuz CF, Ströfer E, Burger J, Hasse H (2018) Separation of water from mixtures containing formaldehyde, water, methanol, methylal, and poly(oxymethylene) dimethyl ethers by pervaporation. J Membr Sci 564:806–812.  https://doi.org/10.1016/j.memsci.2018.07.053 CrossRefGoogle Scholar
  22. 22.
    Schmitz N, Ströfer E, Burger J, Hasse H (2017) Conceptual design of a novel process for the production of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol. Ind Eng Chem Res 56(40):11519–11530.  https://doi.org/10.1021/acs.iecr.7b02314 CrossRefGoogle Scholar
  23. 23.
    Ouda M, Mantei F, Hesterwerth K, Bargiacchi E, Klein H, White RJ (2018) A hybrid description and evaluation of oxymethylene dimethyl ethers synthesis based on the endothermic dehydrogenation of methanol. React Chem Eng 3:676–695.  https://doi.org/10.1039/C8RE00100F CrossRefGoogle Scholar
  24. 24.
    Oestreich D, Lautenschütz L, Arnold U, Sauer J (2018) Production of oxymethylene dimethyl ether (OME)-hydrocarbon fuel blends in a one-step synthesis/extraction procedure. Fuel 214:39–44.  https://doi.org/10.1016/j.fuel.2017.10.116 CrossRefGoogle Scholar
  25. 25.
    Oestreich D, Lautenschütz L, Arnold U, Sauer J (2017) Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OMEs) from methanol and formaldehyde. Chem Eng Sci 163:92–104.  https://doi.org/10.1016/j.ces.2016.12.037 CrossRefGoogle Scholar
  26. 26.
    Zhang J, Shi M, Fang D, Liu D (2014) Reaction kinetics of the production of polyoxymethylene dimethyl ethers from methanol and formaldehyde with acid cation exchange resin catalyst. React Kinet Mech Catal 113(2):459–470.  https://doi.org/10.1007/s11144-014-0771-6 CrossRefGoogle Scholar
  27. 27.
    Burger J, Hasse H (2013) Multi-objective optimization using reduced models in conceptual design of a fuel additive production process. Chem Eng Sci 99:118–126.  https://doi.org/10.1016/j.ces.2013.05.049 CrossRefGoogle Scholar
  28. 28.
    Burger J, Ströfer E, Hasse H (2013) Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chem Eng Res Des 91(12):2648–2662.  https://doi.org/10.1016/j.cherd.2013.05.023 CrossRefGoogle Scholar
  29. 29.
    Burger J, Ströfer E, Hasse H (2012) Chemical equilibrium and reaction kinetics of the heterogeneously catalyzed formation of poly (oxymethylene) dimethyl ethers from methylal and trioxane. Ind Eng Chem Res 51(39):12751–12761.  https://doi.org/10.1021/ie301490q CrossRefGoogle Scholar
  30. 30.
    Burger J, Siegert M, Ströfer E, Hasse H (2010) Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: properties, synthesis and purification concepts. Fuel 89(11):3315–3319.  https://doi.org/10.1016/j.fuel.2010.05.014 CrossRefGoogle Scholar
  31. 31.
    Lautenschütz L, Oestreich D, Haltenort P, Arnold U, Dinjus E, Sauer J (2017) Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxy-methane and trioxane over zeolites. Fuel Process Technol 165:27–33.  https://doi.org/10.1016/j.fuproc.2017.05.005 CrossRefGoogle Scholar
  32. 32.
    Haltenort P, Hackbarth K, Oestreich D, Lautenschütz L, Arnold U, Sauer J (2018) Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane. Catal Commun 109:80–84.  https://doi.org/10.1016/j.catcom.2018.02.013 CrossRefGoogle Scholar
  33. 33.
    Gao X-J, Wang W-F, Gu Y-Y, Zhang Z-Z, Zhang J-F, Zhang Q-D, Tsubaki N, Han Y-Z, Tan Y-S (2018) Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts. ChemCatChem 10:273–279.  https://doi.org/10.1002/cctc.201701213 CrossRefGoogle Scholar
  34. 34.
    Gogate MR (2018) The direct, one-step process for synthesis of dimethyl ether from syngas. III. DME as a chemical feedstock. Pet Sci Technol 36(8):562–568.  https://doi.org/10.1080/10916466.2018.1428630 CrossRefGoogle Scholar
  35. 35.
    Gao X, Wang W, Zhang Z, Zhang Q, Tan Y, Han Y (2017) Progresses in synthesis of polyoxymethylene dimethyl ethers from dimethyl ether. Shiyou Huagong/Petrochem Technol 46(2):143–150.  https://doi.org/10.3969/j.issn.1000-8144.2017.02.001 Google Scholar
  36. 36.
    Zhang Q, Wang W, Zhang Z, Han Y, Tan Y (2016) Low-temperature oxidation of dimethyl ether to polyoxymethylene dimethyl ethers over CNT-supported rhenium catalyst. Catalysts 6(3):43.  https://doi.org/10.3390/catal6030043 CrossRefGoogle Scholar
  37. 37.
    Wang W, Zhang Q, Gao X, Zhang Z, Gu Y, Han Y, Tan Y (2016) VOx modified H-beta zeolite for dimethyl ether direct oxidation to polyoxymethylene dimethyl ethers. Chem Sci J 7(2):124–129.  https://doi.org/10.4172/2150-3494.1000124 Google Scholar
  38. 38.
    Zhang Q, Tan Y, Yang C, Han Y (2007) MnCl2 modified H4SiW12O40/SiO2 catalysts for catalytic oxidation of dimethyl ether to dimethoxymethane. J Mol Catal A 263(1–2):149–155.  https://doi.org/10.1016/j.molcata.2006.08.044 CrossRefGoogle Scholar
  39. 39.
    Lautenschütz L (2015) PhD Thesis, University of HeidelbergGoogle Scholar
  40. 40.
    Goncalves TJ, Arnold U, Plessow PN, Studt F (2017) Theoretical investigation of the acid catalyzed formation of oxymethylene dimethyl ethers from trioxane and dimethoxymethane. ACS Catal 7:3615–3621.  https://doi.org/10.1021/acscatal.7b00701 CrossRefGoogle Scholar
  41. 41.
    Hoffmann M, Bizzarri C, Leitner W, Müller TE (2018) Reaction pathways at the initial steps of trioxane polymerisation. Catal Sci Technol 8:5594–5603.  https://doi.org/10.1039/c8cy01691g CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Philipp Haltenort
    • 1
  • Ludger Lautenschütz
    • 1
  • Ulrich Arnold
    • 1
    Email author
  • Jörg Sauer
    • 1
  1. 1.Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations