Theoretical Study of the Water–Gas Shift Reaction on a Au/Hematite Model Catalyst

  • Silvia A. FuenteEmail author
  • Carolina Zubieta
  • Ricardo M. Ferullo
  • Patricia G. Belelli
Original Paper


Using the density functional theory, the mechanism of the water–gas shift reaction has been investigated employing a model catalyst formed by a Au5 cluster supported on the Fe-terminated (0001) face of hematite (α-Fe2O3), to better understand the role played by the metal–oxide interface in this reaction. Our results indicate that the Au5/hematite model catalyst has a good performance to catalyze the reaction following the so-called adsorptive mechanism. The presence of Au favors the development of the reaction due mainly to the following factors: (i) H2O dissociates very easily at the metal–oxide interface producing OH species; (ii) CO adsorbs strongly on a Au site nearby the position of OH; (iii) the hydroxycarbonyl intermediate (HOCO) is formed at the interface from CO and OH with a low activation barrier; and (iv) after hydrogen releasing, CO2 is desorbed with relative facility from the interface region. The formation of H2 is the stage of the whole reaction that more energy demands; however, this process is favored if one hydrogen atom comes directly from HOCO, instead of from two hydrogen atoms bound to surface oxygen anions.


Hematite Gold DFT Model catalysts WGSR 



Authors thank Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) of Argentina for financial support.


  1. 1.
    Pal DB, Chand R, Upadhyay SN, Mishra PK (2018) Performance of water gas shift reaction catalysts: a review. Renew Sustain Energy Rev 93:549–565CrossRefGoogle Scholar
  2. 2.
    Hong YK, Lee DW, Ko YC, Yinghua L, Han HS, Lee KY (2010) Passive NOx reduction with CO using Pd/TiO2/Al2O3 + WGSR catalysts under simulated post-Euro IV diesel exhaust conditions. Catal Lett 136:106–115CrossRefGoogle Scholar
  3. 3.
    Hu YH, Ruckenstein E (2002) Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal Rev Sci Eng 44:423–453CrossRefGoogle Scholar
  4. 4.
    Silberova BAA, Mul G, Makkee M, Moulijn JA (2006) DRIFTS study of the water–gas shift reaction over Au/Fe2O3. J Catal 243:171–182CrossRefGoogle Scholar
  5. 5.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408CrossRefGoogle Scholar
  6. 6.
    Landon P, Ferguson J, Solsona BE, Garcia T, Carley AF, Herzing AA, Kiely CJ, Golunski SE, Hutchings GJ (2005) Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells. Chem Commun 27:3385–3387CrossRefGoogle Scholar
  7. 7.
    Andreeva D, Idakiev V, Tabakova T, Andreev A, Giovanoli R (1996) Low-temperature water–gas shift reaction on Au/α-Fe2O3 catalyst. Appl Catal A 134:275–283CrossRefGoogle Scholar
  8. 8.
    Andreeva D (2002) Low temperature water gas shift over gold catalysts. Gold Bull 35:82–88CrossRefGoogle Scholar
  9. 9.
    Venugopal A, Scurrell MS (2004) Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behavior in the water–gas shift reaction. Appl Catal A 258:241–249CrossRefGoogle Scholar
  10. 10.
    Kudo S, Maki T, Fukuda T, Mae K (2011) Pre-reduction of Au/iron oxide catalyst for low-temperature water-gas shift reaction below 150°C. Catalysts 1:175–190CrossRefGoogle Scholar
  11. 11.
    Soria MA, Pérez P, Carabineiro SAC, Maldonado-Hódar FJ, Mendes A, Madeira LM (2014) Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water-gas shift reaction. Appl Catal A 470:45–55CrossRefGoogle Scholar
  12. 12.
    Luengnaruemitchai A, Osuwan S, Gulari E (2003) Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2 and Au/Fe2O3 catalysts. Catal Commun 4:215–221CrossRefGoogle Scholar
  13. 13.
    Bocuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) FTIR study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts. J Catal 188:176–185CrossRefGoogle Scholar
  14. 14.
    Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M (2007) Comparison of the activity of Au/CeO2 and Au/Fe2O3 catalysts for the CO oxidation and the water-gas shift reactions. Top Catal 44:199–208CrossRefGoogle Scholar
  15. 15.
    Daniells ST, Makkee M, Moulijn JA (2005) The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3 catalysts. Catal Lett 100:39–47CrossRefGoogle Scholar
  16. 16.
    Jiying W, Zhenzhong Z, Lan Z, Bifang M, Feng J (2012) Analysis or the active Au species on Au/Fe2O3 catalyst. Rare Met Mater Eng 41:377–382CrossRefGoogle Scholar
  17. 17.
    Minicò S, Scirè S, Crisafulli C, Visco AM, Galvagno S (1997) FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature. Catal Lett 47:273–276CrossRefGoogle Scholar
  18. 18.
    Hodge NA, Kiely CJ, Whyman R, Siddiqui MRH, Hutchings GJ, Pankhurst QA, Wagner FE, Rajaram RR, Golunski SE (2002) Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation. Catal Today 72:133–144CrossRefGoogle Scholar
  19. 19.
    Gokhale AA, Dumesic JA, Mavrikakis M (2008) On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc 130:1402–1414CrossRefGoogle Scholar
  20. 20.
    Fajín JLC, Cordeiro MDS, Illas F, Gomes JRB (2009) Influence of step sites in the molecular mechanism of the water gas shiftreaction catalyzed by copper. J Catal 268:131–141CrossRefGoogle Scholar
  21. 21.
    Wong K, Zeng QH, Yu AB (2011) Electronic structure of metal (M = Au, Pt, Pd, or Ru) bilayer modified & α-Fe2O3(0001) surfaces. J Phys Chem C 115:4656–4663CrossRefGoogle Scholar
  22. 22.
    Kiejna A, Pabisiak T (2012) Surface properties of clean and Au or Pd covered hematite (α-Fe2O3) (0001). J Phys Condens Matter 24:095003CrossRefGoogle Scholar
  23. 23.
    Pabisiak T, Winiarski MJ, Kiejna A (2016) CO adsorption on small Aun (n = 1–4) structures supported on hematite. I. Adsorption on iron terminated α-Fe2O3 (0001) surface. J Chem Phys 144:044704CrossRefGoogle Scholar
  24. 24.
    Pabisiak T, Winiarski MJ, Kiejna A (2016) CO adsorption on small Aun (n = 1–4) structures supported on hematite. II. Adsorption on the O-rich termination of α-Fe2O3(0001) surface. J Chem Phys 144:044705CrossRefGoogle Scholar
  25. 25.
    Nguyen MT, Farnesi Camellone M, Gebauer R (2015) On the electronic, structural, and thermodynamic properties of Au supported on α-Fe2O3 surfaces and their interaction with CO. J Chem Phys 143:034704CrossRefGoogle Scholar
  26. 26.
    Howard KL, Willock DJ (2011) A periodic DFT study of the activation of O2 by Au nanoparticles on α-Fe2O3. Faraday Discuss 152:135–151CrossRefGoogle Scholar
  27. 27.
    Fuente SA, Fortunato LF, Zubieta C, Ferullo RM, Belelli PG (2018) Water dissociation at the Au/α-Fe2O3(0001) interface. Mol Catal 446:10–22CrossRefGoogle Scholar
  28. 28.
    Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  29. 29.
    Thevuthasana S, Kim YJ, Yi SI, Chambers SA, Morais J, Denecke R, Fadley CS, Liuc P, Kendelewicz T, Brown GE Jr (1999) Surface structure of MBE-grown α-Fe2O3(0001) by intermediate-energy X-ray photoelectron diffraction. Surf Sci 425:276–286CrossRefGoogle Scholar
  30. 30.
    Chambers SA, Fe Yi SI (1999) termination for α-Fe2O3(0001) as grown by oxygen-plasma-assisted molecular beam epitaxy. Surf Sci Lett 439:L785–L791CrossRefGoogle Scholar
  31. 31.
    Shaikhutdinov SK, Weiss W (1999) Oxygen pressure dependence of the α-Fe2O3(0001) surface structure. Surf Sci Lett 432:L627–L634CrossRefGoogle Scholar
  32. 32.
    Wang XG, Weiss W, Shaikhutdinov SK, Ritter M, Peterson M, Wagner F, Schlögl R, Scheffler M (1998) The hematite (α-Fe2O3) (0001) surface: evidence for domains of distinct chemistry. Phys Rev Lett 81:1038–1041CrossRefGoogle Scholar
  33. 33.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRefGoogle Scholar
  34. 34.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115–13118CrossRefGoogle Scholar
  35. 35.
    Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid–metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 48:4978CrossRefGoogle Scholar
  38. 38.
    Plata JJ, Graciani J, Evans J, Rodriguez JA, Fernández Sanz J (2016) Cu deposited on CeOx-modified TiO2(110): synergistic effects at the metal–oxide interface and the mechanism of the WGS reaction. ACS Catal 6:4608–4615CrossRefGoogle Scholar
  39. 39.
    Rodríguez JA, Evans J, Graciani J, Park JB, Liu P, Hrbek J, Fdez Sanz J (2009) High water-gas shift activity in TiO2(110) supported Cu and Au nanoparticles: role of the oxide and metal particle size. J Phys Chem C 113:7364–7370CrossRefGoogle Scholar
  40. 40.
    Peng SF, Ho JJ (2011) The mechanism of the water-gas shift reaction on Cu/TiO2(110) elucidated from application of density-functional theory. Phys Chem Chem Phys 13:20393–20400CrossRefGoogle Scholar
  41. 41.
    Mudiyanselage K, Senanayake SD, Feria L, Kundu S, Baber AE, Graciani J, Vidal AB, Agnoli S, Evans J, Chang R, Axnanda S, Liu Z, Sanz JF, Liu P, Rodriguez JA, Stacchiola DJ (2013) Importance of the metal–oxide interface in catalysis. In situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 52:5101–5105CrossRefGoogle Scholar
  42. 42.
    Blochl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  43. 43.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  44. 44.
    Rollmann G, Rohrbach A, Entel P, Hafner J (2004) First-principles calculation of the structure and magnetic phases of hematite. Phys Rev B 69:165107CrossRefGoogle Scholar
  45. 45.
    Finger LW, Hazen RM (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 Kbars. J Appl Phys 51:5362CrossRefGoogle Scholar
  46. 46.
    Coey J, Sawatzky G (1971) A study of hyperfine interactions in the system (Fe1−xRhx)2O3 using the Mossbauer effect (bonding parameters). J Phys C 4:2386–2407CrossRefGoogle Scholar
  47. 47.
    Yang CT, Wood BC, Bhethanabotla VR, Joseph B (2015) The effect of themorphology of supported subnanometer Pt clusters on the first and key step of CO2 photoreduction. Phys Chem Chem Phys 17:25379–25392CrossRefGoogle Scholar
  48. 48.
    Barrio L, Liu P, Rodríguez JA, Campos-Martin JM, Fierro JLG (2006) A density functional theory study of the dissociation of H2 on gold clusters: importance of fluxionality and ensemble effects. J Chem Phys 125:164715CrossRefGoogle Scholar
  49. 49.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford Science, OxfordGoogle Scholar
  50. 50.
    Shubina TE, Hartnig C, Koper MTM (2004) Density functional theory study of the oxidation of CO by OH on Au(110) and Pt(111) surfaces. Phys Chem Chem Phys 6:4215–4221CrossRefGoogle Scholar
  51. 51.
    Plata JJ, Romero-Sarria F, Amaya Suárez J, Márquez AM, Laguna OH, Odriozola JA, Sanz JF (2018) Improving the activity of gold nanoparticles for the water gas shift reaction using TiO2-Y2O3: an example of catalysts design. Phys Chem Chem Phys 20:22076–22083CrossRefGoogle Scholar
  52. 52.
    Liu ZP, Jenkins SJ, King DA (2005) Origin and activity of oxidized gold in water-gas-shift catalysis. Phys Rev Lett 94:196102CrossRefGoogle Scholar
  53. 53.
    Chiang HN, Jiang JC (2013) Density functional theory study of water-gas-shift reaction on 3Cu/α-Al2O3(0001) surface. J Phys Chem C 117:12045–12053CrossRefGoogle Scholar
  54. 54.
    Campbell CT, Sellers JRV (2012) The entropies of adsorbed molecules. J Am Chem Soc 134:18109–18115CrossRefGoogle Scholar
  55. 55.
    He Y, Liu JC, Luo L, Wang YG, Zhu J, Du Y, Li J, Mao SX, Wang C (2018) Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc Natl Acad Sci USA 115:7700–7705CrossRefGoogle Scholar
  56. 56.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IFISUR, Universidad Nacional del Sur (UNS-CONICET)Bahía BlancaArgentina
  2. 2.INQUISUR, Departamento de QuímicaUniversidad Nacional del Sur (UNS)-CONICETBahía BlancaArgentina

Personalised recommendations