Advertisement

Site Selective Detection of Methane Dissociation on Stepped Pt Surfaces

  • A. Gutiérrez-González
  • M. E. Torio
  • H. F. BusnengoEmail author
  • R. D. BeckEmail author
Original Paper
  • 44 Downloads

Abstract

We report a combined experimental and theoretical study comparing methane dissociation on three different platinum surfaces Pt(111), Pt(211), and Pt(110)-(1 × 2). Reflection absorption infrared spectroscopy (RAIRS) was used to detect chemisorbed methyl species formed by dissociative chemisorption of CH4 on specific surface sites and to measure surface-site-specific sticking coefficients of CH4 on the terrace, step, and ridge sites as function of incident translational energy. Methane dissociation is observed to be direct on all sites and diffusion of the chemisorbed methyl species is absent for surface temperature below 150 K. The experimental data are compared with the results of density functional (DFT) calculations that give minimum energy barriers for CH4 chemisorption that properly account for the experimental relative site-specific reactivities. Also in agreement with experiments, DFT results predict a negligible effect of co-adsorbed H and CH3 species on the vibrational frequency of a methyl group chemisorbed on terrace and step sites of Pt(211). However, the origin of the red-shift of the RAIRS peak of CH3 chemisorbed on terrace sites compared with that on step sites of Pt(211) remains elusive and still demands further investigation.

Keywords

Pt surfaces Methane RAIRS DFT 

Notes

Acknowledgements

This work was supported by the Consejo National de Investigationes Cientificas Técnicas (CONICET) and Ministerio de Educación, Cultura, Ciencia y Tecnología (ME) of Argentina and the Swiss National Science Foundation under the Argentinian-Swiss Joint Research Program (ASJRP) Project Nr. IZSAZ2-173328 as well as the ANPCyT Project PICT No. 2750 (ME-Argentina), and the UNR project PID ING534. M.E.T and H.F.B acknowledge computer time provided by CCT-Rosario Computational Center, and Centro de Simulación Computacional para Aplicaciones Tecnológicas (CSC), members of the High Performance Computing National System (SNCAD, ME-Argentina).

References

  1. 1.
    Chorkendorff I, Niemantsverdriet JW (2003) Concepts of modern catalysis and kinetics. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Juurlink LBF, Killelea DR, Utz AL (2009) Prog Surf Sci 84:69CrossRefGoogle Scholar
  3. 3.
    Utz AL (2009) Curr Opin Solid State Mater Sci 13:4CrossRefGoogle Scholar
  4. 4.
    Chadwick H, Beck RD (2017) Annu Rev Phys Chem 68:39CrossRefGoogle Scholar
  5. 5.
    Chadwick H, Beck RD (2016) Chem Soc Rev 45:3576CrossRefGoogle Scholar
  6. 6.
    Rettner CT, Pfnür HE, Auerbach DJ (1985) Phys Rev Lett 54:2716CrossRefGoogle Scholar
  7. 7.
    Rettner CT, Pfnür HE, Auerbach DJ (1986) J Chem Phys 84:4163CrossRefGoogle Scholar
  8. 8.
    Juurlink L, McCabe P, Smith R, DiCologero C, Utz AL (1999) Phys Rev Lett 83:868CrossRefGoogle Scholar
  9. 9.
    Hundt PM, Jiang B, van Reijzen ME, Guo H, Beck RD (2014) Science 344:504CrossRefGoogle Scholar
  10. 10.
    Bisson R, Dang TT, Sacchi M, Beck RD (2008) J Chem Phys 129:081103CrossRefGoogle Scholar
  11. 11.
    Beck RD, Maroni P, Papageorgopoulos DC, Dang TT, Schmid MP, Rizzo TR (2003) Science 302:98CrossRefGoogle Scholar
  12. 12.
    Smith RR, Killelea DR, DelSesto DF, Utz AL (2004) Science 304:992CrossRefGoogle Scholar
  13. 13.
    Bisson R, Sacchi M, Dang TT, Yoder B, Maroni P, Beck RD (2007) J Phys Chem 111:12679CrossRefGoogle Scholar
  14. 14.
    Bisson R, Sacchi M, Beck RD (2010) Phys Rev B 82:121404CrossRefGoogle Scholar
  15. 15.
    Donald SB, Harrison I (2012) Phys Chem Chem Phys 14:1784CrossRefGoogle Scholar
  16. 16.
    DeWitt KM, Valadez L, Abbott HL, Kolasinski KW, Harrison I (2006) J Phys Chem B 110:6705CrossRefGoogle Scholar
  17. 17.
    Abbott HL, Bukoski A, Harrison I (2004) J Chem Phys 121:3792CrossRefGoogle Scholar
  18. 18.
    Lozano A, Shen XJ, Moiraghi R, Dong W, Busnengo HF (2015) Surf Sci 640:25CrossRefGoogle Scholar
  19. 19.
    Guo H, Jackson B (2015) J Phys Chem C 119:14769CrossRefGoogle Scholar
  20. 20.
    Jiang B, Guo H (2013) J Phys Chem C 117:16127CrossRefGoogle Scholar
  21. 21.
    Migliorini D, Chadwick H, Nattino F, Gutiérrez-González A, Dombrowski E, High EA, Guo H, Utz AL, Jackson B, Beck RD, Kroes GJ (2017) J Phys Chem Lett 8:4177CrossRefGoogle Scholar
  22. 22.
    Nattino F, Migliorini D, Bonfanti M, Kroes GJ (2016) J Chem Phys 144:044702CrossRefGoogle Scholar
  23. 23.
    Kroes GJ (2015) J Phys Chem Lett 6:4106CrossRefGoogle Scholar
  24. 24.
    Sabbe MK, Reyniers MF, Reuter K (2012) Catal. Sci Technol 2:2010Google Scholar
  25. 25.
    Vattuone L, Savio L, Rocca M (2008) Surf Sci Rep 63:101CrossRefGoogle Scholar
  26. 26.
    Libuda J, Freund HJ (2005) Surf Sci Rep 57:157CrossRefGoogle Scholar
  27. 27.
    Juurlink L (2018) J Phys: Condens Matter 30:090301Google Scholar
  28. 28.
    Gee AT, Hayden BE, Mormiche C, Kleyn AW, Riedmüller B (2003) J Chem Phys 118:3334CrossRefGoogle Scholar
  29. 29.
    King DA, Wells MG (1972) Surf Sci 29:454CrossRefGoogle Scholar
  30. 30.
    Badan C, Koper MTM, Juurlink LBF (2015) J Phys Chem C 119:13551CrossRefGoogle Scholar
  31. 31.
    Papp C, Tränkenschuh B, Streber R, Fuhrmann T, Denecke R, Steinrück HP (2007) J Phys Chem C 111:2177CrossRefGoogle Scholar
  32. 32.
    Chadwick H, Guo H, Gutiérrez-González A, Menzel JP, Jackson B, Beck RD (2018) J Chem Phys 148:014701CrossRefGoogle Scholar
  33. 33.
    Jackson B, Nave S (2011) J Chem Phys 135:114701CrossRefGoogle Scholar
  34. 34.
    Nave S, Tiwari AK, Jackson B (2014) J Phys Chem A 118:9615CrossRefGoogle Scholar
  35. 35.
    Papoian G, Nørskov JK, Hoffmann R (2000) J Am Chem Soc 122:4129CrossRefGoogle Scholar
  36. 36.
    Michaelides A, Hu P (2001) J Chem Phys 114:2523CrossRefGoogle Scholar
  37. 37.
    Petersen MA, Jenkins SJ, King DA (2004) J Phys Chem B 108:5909CrossRefGoogle Scholar
  38. 38.
    Ford DC, Xu L, Mavrikakis M (2005) Surf Sci 587:159CrossRefGoogle Scholar
  39. 39.
    Nave S, Tiwari AK, Jackson B (2010) J Chem Phys 132:054705CrossRefGoogle Scholar
  40. 40.
    Chen Y, Vlachos DG (2010) J Phys Chem C 114:4973CrossRefGoogle Scholar
  41. 41.
    Viñes F, Lykhach Y, Staudt T, Lorenz MPA, Papp C, Steinrück HP, Libuda J, Neyman KM, Görling A (2010) Chem A Eur J 16:6530CrossRefGoogle Scholar
  42. 42.
    Qi Q, Wang X, Chen L, Li B (2013) Appl Surf Sci 284:784CrossRefGoogle Scholar
  43. 43.
    Mukerji RJ, Bolina AS, Brown WA (2003) Surf Sci 527:198CrossRefGoogle Scholar
  44. 44.
    Gutiérrez-González A, Crim FF, Beck RD (2018) J Chem Phys 149:074701CrossRefGoogle Scholar
  45. 45.
    Chen L, Ueta H, Bisson R, Beck RD (2013) Rev Sci Instrum 84:053902CrossRefGoogle Scholar
  46. 46.
    Scoles G (1988) Atomic and molecular beam methods. Oxford University Press, New YorkGoogle Scholar
  47. 47.
    Speller S, Kuntze J, Rauch T, Bömermann J, Huck M, Aschoff M, Heiland W (1996) Surf Sci 366:251CrossRefGoogle Scholar
  48. 48.
    Tate MR, Gosalvez-Blanco D, Pullman DP, Tsekouras AA, Li YL, Yang JJ, Laughlin KB, Eckman SC, Bertino MF, Ceyer ST (1999) J Chem Phys 111:3679CrossRefGoogle Scholar
  49. 49.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  50. 50.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  51. 51.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251CrossRefGoogle Scholar
  52. 52.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  53. 53.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  54. 54.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  55. 55.
  56. 56.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  57. 57.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  58. 58.
    Klimeš J, Bowler DR, Michaelides A (2010) J Phys: Condens Matter 22:022201Google Scholar
  59. 59.
    Chen L, Ueta H, Bisson R, Beck RD (2012) Faraday Discuss 157:285CrossRefGoogle Scholar
  60. 60.
    Oakes DJ, Mccoustra MRS, Chesters MA (1993) Faraday Discuss 96:325CrossRefGoogle Scholar
  61. 61.
    Bădescu C, Jacobi K, Wang Y, Bedürftig K, Ertl G, Salo P, Ala-Nissila T, Ying SC (2003) Phys Rev B Condens Matter Mater Phys 68:205401CrossRefGoogle Scholar
  62. 62.
    Fairbrother DH, Peng XD, Trenary M, Stair PC (1995) J Chem Soc Faraday Trans 91:3619CrossRefGoogle Scholar
  63. 63.
    Deng R, Herceg E, Trenary M (2004) Surf Sci 573:310CrossRefGoogle Scholar
  64. 64.
    Jacob T, Goddard WA III (2005) J Phys Chem B 109:297CrossRefGoogle Scholar
  65. 65.
    Orita H, Inada Y (2005) J Phys Chem B 109:22469CrossRefGoogle Scholar
  66. 66.
    Walsh AJ, van Lent R, Auras SV, Gleeson MA, Berg OT, Juurlink LBF (2017) J Vac Sci Technol A Vac Surf Film 35:03E102CrossRefGoogle Scholar
  67. 67.
    Xu J, Yates JT (1995) Surf Sci 327:193CrossRefGoogle Scholar
  68. 68.
    Bisson R, Sacchi M, Beck RD (2010) J Chem Phys 132:094702CrossRefGoogle Scholar
  69. 69.
    Brandt RK, Sorbello RS, Greenler RG (1992) Surf Sci 271:605CrossRefGoogle Scholar
  70. 70.
    Chadwick H, Gutiérrez-González A, Beck RD, Kroes GJ (2019) J Chem Phys 150:124702CrossRefGoogle Scholar
  71. 71.
    Calle-Vallejo F, Tymoczko J, Colic V, Vu QH, Pohl MD, Morgenstern K, Loffreda D, Sautet P, Schuhmann W, Bandarenka AS (2015) Science 350:185CrossRefGoogle Scholar
  72. 72.
    Petersen MA, Jenkins SJ, King DA (2004) J Phys Chem B 108:5920CrossRefGoogle Scholar
  73. 73.
    Olsen RA, Bǎdescu ŞC, Ying SC, Baerends EJ (2004) J Chem Phys 120:11852CrossRefGoogle Scholar
  74. 74.
    Anghel AT, Wales DJ, Jenkins SJ, King DA (2005) Phys Rev B Condens Matter Mater Phys 71:2Google Scholar
  75. 75.
    Hammer B, Nørskov JK (1995) Surf Sci 343:211CrossRefGoogle Scholar
  76. 76.
    Hammer B, Nørskov JK (1995) Nature 376:238CrossRefGoogle Scholar
  77. 77.
    Hammer B, Nørskov JK (2000) Adv Catal 45:71Google Scholar
  78. 78.
    Watanabe K, Matsumoto Y (1997) Surf Sci 390:250CrossRefGoogle Scholar
  79. 79.
    Killelea DR, Campbell VL, Shuman NS, Smith RR, Utz AL (2009) J Phys Chem C 113:20618CrossRefGoogle Scholar
  80. 80.
    Ueta H, Chen L, Beck RD, Colón-Díaz I, Jackson B (2013) Phys Chem Chem Phys 15:20526CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Chimie Physique Moléculaire (LCPM)École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS), CONICET-UNRRosarioArgentina
  3. 3.Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de RosarioRosarioArgentina
  4. 4.Instituto de Física Rosario (IFIR), CONICET-UNRRosarioArgentina

Personalised recommendations