Exploring the Synthesis of Mesoporous Stannosilicates as Catalysts for the Conversion of Mono- and Oligosaccharides into Methyl Lactate

  • Irene Tosi
  • Annalisa Sacchetti
  • Juan S. Martinez-Espin
  • Sebastian Meier
  • Anders RiisagerEmail author
Original Paper


Sn-beta zeolites are among the most promising catalysts for the conversion of biomasses due to their high Lewis acidity, which allows coordination to functionalized molecules and promotes cleavage and rearrangement reactions. For applications in biorefining zeolite porosity would ideally be optimized to avoid diffusional limitations, which otherwise may decrease reaction rates and restrict the conversion of bulky substrates. The synthesis of mesoporous zeolites can help alleviating limitations and is a central topic in heterogeneous catalysis, with many synthetic procedures for mesoporous zeolites proposed over the last decades. Here, we explore different syntheses routes to prepare Lewis acidic Sn-containing zeolites, and the main features of the prepared mesoporous materials are characterized. We investigate the correlation between different types of porosity and the activity for the conversion of sugars into methyl lactate. The monomer glucose, the dimer sucrose and the oligomer inulin are applied as model substrates for the reaction in order to probe the accessibility of molecules with different sizes to active sites in zeolites with different pore systems.


Biomass conversion Inulin Mesoporous zeolites Methyl lactate Sn-beta 



This work was funded by the Innovation Fund Denmark (Case Number 5150-00023B). 800 MHz NMR spectra were recorded by using the spectrometer of the NMR center DTU supported by the Villum foundation. AS acknowledges the Erasmus + Programme for the traineeship grant.

Supplementary material

11244_2019_1135_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2030 KB)


  1. 1.
    Sudarsanam P et al. (2018) Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 47:8349–8402CrossRefGoogle Scholar
  2. 2.
    Nemeth L, Bare SR (2014) Chapter one - science and technology of framework metal-containing zeotype catalysts. In: Jentoft FC (ed) Advances in catalysis. Academic Press, Cambridge. p. 1–97Google Scholar
  3. 3.
    Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328(5978):602–605CrossRefGoogle Scholar
  4. 4.
    Moliner M, Román-Leshkov Y, Davis ME (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci 107(14): 6164–6168CrossRefGoogle Scholar
  5. 5.
    Román-Leshkov Y et al (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem Int Ed 49(47):8954–8957CrossRefGoogle Scholar
  6. 6.
    Bermejo-Deval R et al (2014) Active sites in Sn-beta for glucose isomerization to fructose and epimerization to mannose. ACS Catalysis 4(7):2288–2297CrossRefGoogle Scholar
  7. 7.
    Tolborg S et al (2016) Tin-containing silicates: identification of a glycolytic pathway via 3-deoxyglucosone. Green Chem 18(11):3360–3369CrossRefGoogle Scholar
  8. 8.
    Mäki-Arvela P et al (2014) Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chem Rev 114(3):1909–1971CrossRefGoogle Scholar
  9. 9.
    European Bioplastics e.V. Bioplastics market data (2018).
  10. 10.
    Elliot SG et al (2017) Synthesis of a novel polyester building block from pentoses by tin-containing silicates. RSC Advances 7(2):985–996CrossRefGoogle Scholar
  11. 11.
    van der Graaff WNP et al (2017) Influence of pore topology on synthesis and reactivity of Sn-modified zeolite catalysts for carbohydrate conversions. Catal Sci Technol 7(14):3151–3162CrossRefGoogle Scholar
  12. 12.
    Elliot SG et al (2018) NMR spectroscopic isotope tracking reveals cascade steps in carbohydrate conversion by tin-beta. ChemCatChem 10(6):1414–1419CrossRefGoogle Scholar
  13. 13.
    De Clercq R, Dusselier M, Sels BF (2017) Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass: advances, challenges and prospects. Green Chem 19(21):5012–5040CrossRefGoogle Scholar
  14. 14.
    De Clercq R et al (2015) Confinement effects in Lewis acid-catalyzed sugar conversion: steering toward functional polyester building blocks. ACS Catalysis 5(10):5803–5811CrossRefGoogle Scholar
  15. 15.
    Schwieger W et al (2016) Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem Soc Rev 45(12):3353–3376CrossRefGoogle Scholar
  16. 16.
    Serrano DP, Escola JM, Pizarro P (2013) Synthesis strategies in the search for hierarchical zeolites. Chem Soc Rev 42(9):4004–4035CrossRefGoogle Scholar
  17. 17.
    Silaghi M-C, Chizallet C, Raybaud P (2014) Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous Mesoporous Mater 191:82–96CrossRefGoogle Scholar
  18. 18.
    Holm MS et al (2011) Catalysis with hierarchical zeolites. Catal Today 168(1):3–16CrossRefGoogle Scholar
  19. 19.
    Al-Nayili A, Yakabi K, Hammond C (2016) Hierarchically porous BEA stannosilicates as unique catalysts for bulky ketone conversion and continuous operation. J Mater Chem A 4(4):1373–1382CrossRefGoogle Scholar
  20. 20.
    Jin J et al (2014) Synthesis of mesoporous Beta and Sn-beta zeolites and their catalytic performances. Dalton Trans 43(22):8196–8204CrossRefGoogle Scholar
  21. 21.
    Yao J-K et al (2017) Hierarchically porous Sn-β zeolites via an OSDA-free synthesis. Green Chem 19(14):3214–3218CrossRefGoogle Scholar
  22. 22.
    Zhang J et al (2017) Hierarchical Sn-beta zeolite catalyst for the conversion of sugars to alkyl lactates. ACS Sustain Chem Eng 5(4):3123–3131CrossRefGoogle Scholar
  23. 23.
    Hammond C, Conrad S, Hermans I (2012) Simple and scalable preparation of highly active Lewis acidic Sn-beta. Angew Chem Int Ed Engl 51(47):11736–11739CrossRefGoogle Scholar
  24. 24.
    Tolborg S et al (2014) Incorporation of tin affects crystallization, morphology, and crystal composition of Sn-beta. J Mater Chem A 2(47):20252–20262CrossRefGoogle Scholar
  25. 25.
    Roth WJ, Vartuli JC (2005) Synthesis of mesoporous molecular sieves. In: Ĉejka J, van Bekkum H (eds) Studies in surface science and catalysis. Elsevier, New York, pp 91–110Google Scholar
  26. 26.
    Li K, Beaver M, Speronello B, García-Martínez J (2015) Surfactant-templated mesostructuring of zeolites: from discovery to commercialization. In: Mesoporous zeolites preparation, characterization and applicationsGoogle Scholar
  27. 27.
    Verboekend D, Pérez-Ramírez J (2011) Design of hierarchical zeolite catalysts by desilication. Catal Sci Technol 1(6):879–890CrossRefGoogle Scholar
  28. 28.
    Sachse A, García-Martínez J (2017) Surfactant-templating of zeolites: from design to application. Chem Mater 29(9):3827–3853CrossRefGoogle Scholar
  29. 29.
    García-Martínez J et al (2012) Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance. Catal Sci Technol 2(5):987–994CrossRefGoogle Scholar
  30. 30.
    Goto Y et al (2002) Mesoporous Material from Zeolite. J Porous Mater 9(1):43–48CrossRefGoogle Scholar
  31. 31.
    Ivanova II, Knyazeva EE (2013) Micro–mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications. Chem Soc Rev 42(9):3671–3688CrossRefGoogle Scholar
  32. 32.
    Wang L et al (2010) Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous Mesoporous Mater 131(1):58–67Google Scholar
  33. 33.
    Barclay T et al (2012) Analysis of the hydrolysis of inulin using real time 1H NMR spectroscopy. Carbohyd Res 352:117–125CrossRefGoogle Scholar
  34. 34.
    Abasaeed AE, Lee YY (1995) Inulin hydrolysis to fructose by a novel catalyst. Chem Eng Technol 18(6):440–444CrossRefGoogle Scholar
  35. 35.
    Tosi I et al (2018) Kinetic analysis of hexose conversion to methyl lactate by Sn-beta: effects of substrate masking and of water. Catal Sci Technol 8(8):2137–2145CrossRefGoogle Scholar
  36. 36.
    Elliot SG et al (2017) Quantitative NMR approach to optimize the formation of chemical building blocks from abundant carbohydrates. ChemSusChem 10(14):2990–2996CrossRefGoogle Scholar
  37. 37.
    Rundlof T et al (2010) Survey and qualification of internal standards for quantification by 1H NMR spectroscopy. J Pharm Biomed Anal 52(5):645–651CrossRefGoogle Scholar
  38. 38.
    Saravanamurugan S et al (2017) Facile and benign conversion of sucrose to fructose using zeolites with balanced Brønsted and Lewis acidity. Catal Sci Technol 7(13):2782–2788CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Dipartimento di Chimica Industriale “Toso Montanari”Alma Mater Studiorum-University of BolognaBolognaItaly
  3. 3.Haldor Topsøe A/SKgs. LyngbyDenmark

Personalised recommendations