Advertisement

Synthesis of Nano-engineered Catalysts Consisting of Co3O4 Nanoparticles Confined in Porous SiO2

  • Simone Louise Zacho
  • Dorotea Gajdek
  • Jerrik Mielby
  • Søren KegnæsEmail author
Original Paper
  • 47 Downloads

Abstract

Here we exploit zeolitic imidazolate frameworks ZIF-67 and ZIF-8 as precursors to obtain nanorattle catalysts with Co3O4 nanoparticles confined inside porous SiO2 shells. The method is simple and uses zeolitic imidazolate frameworks as both structural templates and sacrificial precursors. Nanorattle catalysts of different sizes and metal loadings are designed by varying the Co/Zn ratio in the zeolitic imidazolate frameworks. It is possible to obtain different metal loadings by introduction and removal of Zn using evaporation. Moreover, all produced catalysts contained small Co3O4 nanoparticles. Finally, the different catalysts are tested in CO oxidation to demonstrate the effect of variations as a proof of concept. Thus, the use of metal–organic frameworks to control properties in nanorattle catalysts proposes an alternative method for the preparation of novel catalysts and shows a new pathway for synthesis of nanostructured materials.

Keywords

Metal–organic framework Mesoporous materials Templating Nanorattle catalysts CO oxidation 

Notes

Acknowledgements

The authors thank the Independent Research Fund Denmark (Grant Nos. 5054-00119 and 6111-00237), Villum fonden (Grant No. 13158), and Haldor Topsøe A/S for financial support.

Supplementary material

11244_2019_1134_MOESM1_ESM.docx (221 kb)
Supplementary material 1 (DOCX 220 KB)

References

  1. 1.
    Rothenberg G (2008) Catalysis: concepts and green applications. Wiley, WeinheimCrossRefGoogle Scholar
  2. 2.
    Wang F, Mielby J, Richter FH, Wang G, Prieto G, Kasama T, Weidenthaler C, Bongard HJ, Kegnæs S, Fürstner A, Schüth F (2014) Angew Chem Int Ed 53:8645–8648CrossRefGoogle Scholar
  3. 3.
    Thomas JM, Raja R, Lewis DW (2005) Angew Chem Int Ed 44:6456–6482CrossRefGoogle Scholar
  4. 4.
    Kramer S, Bennedsen NR, Kegnæs S (2018) ACS Catal 8:6961–6982CrossRefGoogle Scholar
  5. 5.
    Freyschlag CG, Madix RJ (2011) Mater Today 14:134–142CrossRefGoogle Scholar
  6. 6.
    Lin J, Wang X, Zhang T (2016) Chin J Catal 37:1805–1813CrossRefGoogle Scholar
  7. 7.
    Gorbanev YY, Kegnæs S, Hanning CW, Hansen TW, Riisager A (2012) ACS Catal 2:604–612CrossRefGoogle Scholar
  8. 8.
    Mallat T, Baiker A (2004) Chem Rev 104:3037–3058CrossRefGoogle Scholar
  9. 9.
    Mielby J, Abildstrøm JO, Wang F, Kasama T, Weidenthaler C, Kegnæs S (2014) Angew Chem Int Ed 53:12513–12516Google Scholar
  10. 10.
    Kon Y, Usui Y, Sato K (2007) Chem Commun 42:4399–4400CrossRefGoogle Scholar
  11. 11.
    Mielby J, Poreddy R, Engelbrekt C, Kegnæs S (2014) Chin J Catal 35:769–775CrossRefGoogle Scholar
  12. 12.
    Royer S, Duprez D (2011) ChemCatChem 3:24–65CrossRefGoogle Scholar
  13. 13.
    Corma A (2016) Angew Chem Int Ed 55:6112–6113CrossRefGoogle Scholar
  14. 14.
    Arnal PM, Comotti M, Schüth F (2006) Angew Chem Int Ed 45:8224–8227CrossRefGoogle Scholar
  15. 15.
    Laursen AB, Højholt KT, Lundegaard LF, Simonsen SB, Helveg S, Schüth F, Paul M, Grunwaldt JD, Kegnæs S, Christensen CH, Egeblad K (2010) Angew Chem Int Ed 49:3504–3507CrossRefGoogle Scholar
  16. 16.
    Joo SH, Park JY, Tsung C, Yamada Y, Yang P, Somorjai GA (2009) Nat Mater 8:126–131CrossRefGoogle Scholar
  17. 17.
    Ren N, Yang YH, Shen J, Zhang YH, Xu HL, Gao Z, Tang Y (2007) Catal 251:182–188CrossRefGoogle Scholar
  18. 18.
    Højholt KT, Laursen AB, Kegnæs S, Christensen CH (2011) Top Catal 54:1026–1103CrossRefGoogle Scholar
  19. 19.
    Zhang X, Zhao Y, Jia X, Zhao Y, Shang L, Wang Q, Zhang T (2018) Adv Energy Mater 8(12):1702780CrossRefGoogle Scholar
  20. 20.
    Shang L, Liang Y, Li M, Waterhouse GIN, Tang P, Ma D, Zhang T (2017) Adv Funct Mater 27(9):1606215CrossRefGoogle Scholar
  21. 21.
    Shang L, Yu H, Huang X, Bian T, Shi R, Zhao Y, Zhang T (2016) Adv Mater 28(8):1668–1674CrossRefGoogle Scholar
  22. 22.
    Shang L, Bian T, Zhang B, Zhang D, Wu LZ, Tung CH, Zhang T (2014) Angew Chem Int Ed 53(1):250–254CrossRefGoogle Scholar
  23. 23.
    Vriezema DM, Aragones MC, Elemans JAAW, Cornelissen JJLM, Rowan AE, Nolte RJM (2005) Chem Rev 105:1445CrossRefGoogle Scholar
  24. 24.
    El-Toni AM, Habila MA, Labis JP, Alothman ZA, Alhoshan M, Elzatahry AA, Zhang F (2016) Nanoscale 8:2510–2531CrossRefGoogle Scholar
  25. 25.
    Shang L, Shi R, Waterhouse GIN, Wu L-Z, Tung C-H, Yin Y, Zhang T (2018) Small Methods.  https://doi.org/10.1002/smtd.201800105 Google Scholar
  26. 26.
    Zeng B, Hou B, Jia L, Wang J, Chen C, Li D, Sun Y (2013) Catal Sci Technol 3:3250CrossRefGoogle Scholar
  27. 27.
    Zeng B, Hou B, Jia L, Wang J, Chen C, Sun Y, Li D (2013) ChemCatChem 5:3794–3801CrossRefGoogle Scholar
  28. 28.
    Xie R, Li D, Hou B, Wang J, Jia L, Sun Y (2011) Catal Commun 12:380–383CrossRefGoogle Scholar
  29. 29.
    Kruse N, Machoke AG, Schwieger W, Güttel R (2015) ChemCatChem 7:1018–1022CrossRefGoogle Scholar
  30. 30.
    Xia BY, Yan Y, Li N, Wu B, Lou XW, Wang X (2016) Nat Energy 1:15006–15014CrossRefGoogle Scholar
  31. 31.
    Cao X, Tan C, Sindoro M, Zhang H (2017) Chem Soc Rev 46:2660–2677CrossRefGoogle Scholar
  32. 32.
    Bennedsen NR, Kramer S, Mielby J, Kegnæs S (2018) Catal Sci Technol 8:2434–2440CrossRefGoogle Scholar
  33. 33.
    Lan X, Huang N, Wang J, Wang T (2018) Chem Commun 54:584–587CrossRefGoogle Scholar
  34. 34.
    Zacho SL, Mielby J, Kegnæs S (2018) Catal Sci Technol 8:4741–4746CrossRefGoogle Scholar
  35. 35.
    Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M (2011) Chem Mater 23:2130–2141CrossRefGoogle Scholar
  36. 36.
    Pour AN, Hosaini E, Tavasoli A, Behroozsarand A, Dolati F (2014) J Nat Gas Sci Eng 21:772–778CrossRefGoogle Scholar
  37. 37.
    Centeno MA, Reina TR, Ivanova S, Laguna OH, Odriozola A (2016) J Catal 6:A15Google Scholar
  38. 38.
    Bekyarova E, Fornasiero P, Kaspar J, Graziani M (1998) Catal Today 45:179–183CrossRefGoogle Scholar
  39. 39.
    Kang Y, Sun M, Li A (2012) Catal Lett 142:1498–1504CrossRefGoogle Scholar
  40. 40.
    Smid B, Sedlacek L, Mori T, Takahashi M, Ou DR, Auchterlonie G et al (2006) Mater Res Soc Jpn 31:899–902Google Scholar
  41. 41.
    Xu XY, Li JJ, Hao ZP (2006) J Rare Earths 24:172–176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Simone Louise Zacho
    • 1
  • Dorotea Gajdek
    • 1
  • Jerrik Mielby
    • 1
  • Søren Kegnæs
    • 1
    Email author
  1. 1.Department of ChemistryTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations