Topics in Catalysis

, Volume 62, Issue 1–4, pp 140–149 | Cite as

NOx Adsorption Over Ce/Zr-Based Catalysts Doped with Cu and Ba

  • J. Giménez-Mañogil
  • J. C. Martínez-Munuera
  • R. Matarrese
  • L. Castoldi
  • L. Lietti
  • A. García-GarcíaEmail author
Original Paper


In this study, Ce/Zr-based materials without noble metals in their formulation have been prepared, characterized and tested in NOx adsorption at different temperatures. In particular, the effect of the presence of Ba and Cu in the catalytic formulation has been investigated. The catalyst characterization shows that the redox properties of the catalysts are enhanced by Cu and inhibited by Ba. Upon interaction with NO/O2, it is found that NOx are stored at low temperatures (150 °C) in the form of nitrites, without any relevant NO oxidation activity. This suggests a direct NO uptake. At higher temperatures (300 °C) a significant NO oxidation activity is observed, that is enhanced by Cu and depressed by Ba. In this case, NOx are stored in the form of nitrates; the samples containing both Ba and Cu exhibits the better performances in terms of NOx adsorption capacity.


Ceria-zirconia Copper species NOx adsorption Nitrites/nitrates 



The authors gratefully acknowledge the financial support of Generalitat Valenciana (PROMETEOII/2018/076 project), the Spanish Ministry of Science, Innovation and Universities (CTQ2015-64801-R project) and the UE-FEDER funding. JCMM wishes to thank Spanish Ministry of Education and Professional Training his PhD contract within the FPU programme (Grant No. FPU17/00603).


  1. 1.
    Aneggi E, Leitenburg CD, Trovarelli A (2013) Ceria-based formulations for catalysts for diesel soot combustion. In: Catalysis by ceria and related materials, 2nd edn. Imperial College Press, LondonGoogle Scholar
  2. 2.
    Trovarelli A, Fornasiero P (2013) Catalysis by ceria and related materials. Imperial College Press, London, pp 565–621CrossRefGoogle Scholar
  3. 3.
    Bueno-López A (2014) Appl Catal B 146:1–11CrossRefGoogle Scholar
  4. 4.
    Neeft JPA, Makkee M, Moulijn JA (1996) Fuel Process Technol 47:1–69CrossRefGoogle Scholar
  5. 5.
    Aneggi E, Leitenburg CD, Dolcetti G, Trovarelli A (2006) Catal Today 114:40–47CrossRefGoogle Scholar
  6. 6.
    Matarrese R, Morandi S, Castoldi L, Villa P, Lietti L (2017) Appl Catal B 201:318–330CrossRefGoogle Scholar
  7. 7.
    Boningari T, Ettiredy PR, Somogyvari A, Liu Y, Vorontsov A, McDonald CA, Smirniotis PG (2015) J Catal 325:145–155CrossRefGoogle Scholar
  8. 8.
    Boningari T, Somogyvari A, Smirniotis PG (2017) Ind Eng Chem Res 56:5483–5494CrossRefGoogle Scholar
  9. 9.
    Bueno-López A, Lozano-Castelló D, Anderson JA (2016) Appl Catal B 198:234–242CrossRefGoogle Scholar
  10. 10.
    Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE (2004) Catal Rev Eng 46:163–245CrossRefGoogle Scholar
  11. 11.
    Bueno-López A, Lozano-Castelló D, Anderson JA (2016) Appl Catal B 198:189–199CrossRefGoogle Scholar
  12. 12.
    Vijay R, Hendershot RJ, Rivera-Jimenez SM, Rogers WB, Feist BJ, Snively CM, Lauterbach J (2005) Catal Commun 6:167–171CrossRefGoogle Scholar
  13. 13.
    Palomares AE, Uzcategui A, Corma A (2008) Catal Today 137:261–266CrossRefGoogle Scholar
  14. 14.
    Corbos EC, Haneda M, Courtois X, Marecot P, Duprez D, Hamada H (2008) Catal Commun 10:137–141CrossRefGoogle Scholar
  15. 15.
    López-Suárez FE, Illán-Gómez MJ, Bueno-López A, Anderson JA (2011) Appl Catal B 104:261–267CrossRefGoogle Scholar
  16. 16.
    Lin F, Wu XD, Weng D (2011) Catal Today 175:124–132CrossRefGoogle Scholar
  17. 17.
    Weng DA, Li J, Wu XD, Si ZC (2010) J Rare Earth 28:542–546CrossRefGoogle Scholar
  18. 18.
    Bueno-López A, Lozano-Castelló D, Anderson JA (2016) Appl Catal B 198:266–275CrossRefGoogle Scholar
  19. 19.
    Giménez-Mañogil J, Bueno-López A, García-García A (2014) Appl Catal B 152–153:99–107CrossRefGoogle Scholar
  20. 20.
    Atribak I, Bueno-López A, Garcia-Garcia A (2008) J Catal 259:123–132CrossRefGoogle Scholar
  21. 21.
    Guillén-Hurtado N, Bueno-López A, García-García A (2012) J Mater Sci 47:3204–3213CrossRefGoogle Scholar
  22. 22.
    Menon U, Poelman H, Bliznuk V, Galvita VV, Poelman D, Marin GB (2012) J Catal 295:91–103CrossRefGoogle Scholar
  23. 23.
    Martínez-Arias A, Fernández-García M, Soria J, Conesa JC (1999) J Catal 182:367–377CrossRefGoogle Scholar
  24. 24.
    Piacentini M, Maciejewski M, Baiker A (2006) Appl Catal B 66:126–136CrossRefGoogle Scholar
  25. 25.
    Lei C, Shen M, Yang M, Wang J, Wang J (2011) Appl Catal B 101:355–365CrossRefGoogle Scholar
  26. 26.
    Infantes-Molina A, Righini L, Castoldi L, Loricera CV, Fierro JLG, Sin A, Lietti L (2012) Catal Today 197:178–189CrossRefGoogle Scholar
  27. 27.
    Shan W, Shen W, Li C (2003) Chem Mater 15:4761–4767CrossRefGoogle Scholar
  28. 28.
    Gamarra D, Munuera G, Hungría AB, Fernández-García M, Conesa JC, Midgley PA, Wang XQ, Hanson JC, Rodríguez JA, Martínez-Arias A (2007) J Phys Chem C 111:11026–11038CrossRefGoogle Scholar
  29. 29.
    Mestl G, Rosynek MP, Lunsford JH (1997) J Phys Chem B 101:9321–9328CrossRefGoogle Scholar
  30. 30.
    Jiao J, Liu X, Gao W, Wang C, Feng H, Zhao X, Chen L (2010) Mater Res Bull 45:181–185CrossRefGoogle Scholar
  31. 31.
    Carley AF, Rajumon MK, Roberts MW (1993) J Solid State Chem 106:156–163CrossRefGoogle Scholar
  32. 32.
    Grünert W, Hayes NW, Joyner RW, Shpiro ES, Siddiqui MRH, Baevas GN (1994) J Phys Chem 98:10832–10846CrossRefGoogle Scholar
  33. 33.
    Skårman B, Nakayama T, Grandjean D, Benfield RE, Olsson E, Niihara K, Wallenberg LR (2002) Chem Mater 14:3686–3699CrossRefGoogle Scholar
  34. 34.
    Skårman B, Grandjean D, Benfield R, Hinz A, Andersson A, Wallenberg L (2002) J Catal 211:119–133Google Scholar
  35. 35.
    Atribak I, Azambre B, Bueno López A, García-García A (2009) Appl Catal B 92:126–137CrossRefGoogle Scholar
  36. 36.
    Espinós JP, Morales J, Barranco A, Caballero A, Holgado JP, González-Elipe AR, Gonza AR (2002) J Phys Chem B 106:6921–6929CrossRefGoogle Scholar
  37. 37.
    Ziegler C, Frank G, Göpel W (1990) Condens Matter 81:349–353CrossRefGoogle Scholar
  38. 38.
    Albaladejo-Fuentes V, López-Suárez FE, Sánchez-Adsuar MS, Illán-Gómez MJ (2014) Appl Catal A 488:189–199CrossRefGoogle Scholar
  39. 39.
    Ghelamallah M, Kacimi S, Fertout RI (2005) Mater Lett 59:714–718CrossRefGoogle Scholar
  40. 40.
    Beckers J, Rothenberg G (2008) Dalton Trans 0:6573–6578CrossRefGoogle Scholar
  41. 41.
    Luo M, Ma J, Lu J, Song Y, Wang Y (2007) J Catal 246:52–59CrossRefGoogle Scholar
  42. 42.
    Vayssilov GN, Mihaylov M, Petkov PS, Hadjiivanov KI, Neyman KM (2011) J Phys Chem C 115:23435–23454CrossRefGoogle Scholar
  43. 43.
    Daturi M, Finocchio E, Binet C, Lavalley JC, Fally F, Perrichon V (1999) J Phys Chem B 103:4884–4891CrossRefGoogle Scholar
  44. 44.
    Azambre B, Zenboury L, Koch A, Weber JV (2009) J Phys Chem C 113:13287–13299CrossRefGoogle Scholar
  45. 45.
    Daturi M, Bion N, Saussey J, Lavalley JC, Hedouin C, Seguelong T, Blanchard G (2001) Phys Chem Chem Phys 3:252–255CrossRefGoogle Scholar
  46. 46.
    Binet C, Badri A, Lavalley JC (1994) J Phys Chem 98:6392–6398CrossRefGoogle Scholar
  47. 47.
    Azambre B, Atribak I, Bueno-López A, García-García A (2010) J Phys Chem C 114:13300–13312CrossRefGoogle Scholar
  48. 48.
    Castoldi L, Matarrese R, Morandi S, Righini L, Lietti L (2018) Appl Catal B 224:249–263CrossRefGoogle Scholar
  49. 49.
    Lietti L, Daturi M, Blasin-Aubè V, Ghiotti G, Prinetto F, Forzatti P (2012) ChemCatChem 4:55–58CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. Giménez-Mañogil
    • 1
  • J. C. Martínez-Munuera
    • 1
  • R. Matarrese
    • 2
  • L. Castoldi
    • 2
  • L. Lietti
    • 2
  • A. García-García
    • 1
    Email author
  1. 1.MCMA Group, Department of Inorganic Chemistry, Institute of MaterialsUniversity of AlicanteAlicanteSpain
  2. 2.Laboratory of Catalysis and Catalytic Processes, Dipartimento di EnergiaPolitecnico di MilanoMilanoItaly

Personalised recommendations