Advertisement

A Novel Analysis of Transient Isothermal 18O Isotopic Exchange on Commercial CexZr1−xO2-Based OSC Materials

  • Michalis A. Vasiliades
  • Deb Harris
  • Hazel Stephenson
  • Soghomon Boghosian
  • Angelos M. Efstathiou
Original Paper
  • 17 Downloads

Abstract

A novel methodology for the analysis of 18O2-transient isothermal isotopic exchange (TIIE) response curves obtained over commercial mixed metal oxides upon the gas switch 16O2/Ar (30 min) → 18O2/Kr/Ar (t) at constant T in a flow CSTR micro-reactor in the absence of external and internal mass transport resistances and grain boundary effects, is presented for the first time. The specific aim of this analysis was to derive quantitative descriptors of the 16O/18O exchange under pseudo-equilibrium conditions for the transfer rates of oxygen between the gas and solid phases, enabling the assessment of differences in the kinetics of bulk oxygen diffusion over a series of commercial OSC materials used in various catalytic applications (e.g. TWC), without the need of performing any mathematical and kinetic modelling of the surface/bulk oxygen diffusion processes. Based on these descriptors, commercial OSC mixed metal oxides prepared by the same chemical synthesis route but varying the value of one of the synthesis parameters, and having the same at.% composition, were proved to possess largely different transient kinetic rates and other features of the transient response curves of 16O/18O exchange strongly related to the bulk oxygen diffusion in the solids. This novel 18O2-TIIE analysis is quick and provides a reliable means for proving or disproving likely infringement of patented commercial mixed metal oxides OSC materials.

Keywords

OSC Transient isothermal oxygen isotopic exchange Bulk oxygen diffusion 

Notes

Acknowledgements

The Research Committee of the University of Cyprus, and the project “Materials and Processes for Energy and Environment Applications” (MIS 5002556) implemented under the “Action for the Strategic Development on the Research and Technological Sector”, funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund), are acknowledged for financial support. Dr. Klito Petallidou is acknowledged for the powder XRD work.

Supplementary material

11244_2018_1116_MOESM1_ESM.docx (246 kb)
Supplementary material 1 (DOCX 246 KB)

References

  1. 1.
    Duprez D (2006) In: Hargreaves JS, Jackson SD, Webb G (eds) Isotopes in heterogeneous catalysis. Imperial College Press, London, pp 133–181CrossRefGoogle Scholar
  2. 2.
    Sadovskaya EM, Ivanova YA, Pinaeva LG, Grasso G, Kuznetsova TG, Veen AV, Sadykov VA, Mirodatos C (2007) J Phys Chem A 111:4498CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sadovskaya EM, Bobin AS, Skazka VV (2018) Chem Eng J 348:1025, (references therein)CrossRefGoogle Scholar
  4. 4.
    Takao Y, Norman C, Edwards G (2005) Process for preparing zirconium-cerium-based mixed oxides. EP 1 444 036 B1Google Scholar
  5. 5.
    Christodoulakis A, Boghosian S (2003) J Catal 215:139CrossRefGoogle Scholar
  6. 6.
    Tsilomelekis G, Boghosian S (2013) Catal Sci Technol 3:1869CrossRefGoogle Scholar
  7. 7.
    Ilieva L, Petrova P, Pantaleo G, Zanella R, Liotta L, Georgiev V, Boghosian S, Kaszkur Z, Sobczak JW, Lisowski W, Venezia AM, Tabakova T (2016) Appl Catal B 188:154CrossRefGoogle Scholar
  8. 8.
    Andriopoulou C, Trimpalis A, Petallidou KC, Sgoura A, Efstathiou AM, Boghosian S (2017) J Phys Chem C 121:7931CrossRefGoogle Scholar
  9. 9.
    Costa CN, Christou SY, Georgiou G, Efstathiou AM (2003) J Catal 219:259CrossRefGoogle Scholar
  10. 10.
    Efstathiou AM, Bennett CO (1989) J Catal 120:137CrossRefGoogle Scholar
  11. 11.
    Perego C, Peratello S (1999) Catal Today 52:133CrossRefGoogle Scholar
  12. 12.
    Efstathiou AM, Gleaves JT, Yablonsky GS (2012) In: Che M, Vedrine JC (eds) Characterization of solid materials: from structure to surface reactivity. Wiley-VCH, Weinheim, pp. 1013–1073Google Scholar
  13. 13.
    Efstathiou AM (2016) Catalysis 28:175CrossRefGoogle Scholar
  14. 14.
    Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J Phys Chem B 109:24380CrossRefPubMedGoogle Scholar
  15. 15.
    Ivanov DV, Sadovskaya EM, Pinaeva LG, Isupova LA (2009) J Catal 267:5CrossRefGoogle Scholar
  16. 16.
    Petallidou KC, Efstathiou AM (2013), Appl Catal B 140–141:333CrossRefGoogle Scholar
  17. 17.
    Yashima M, Arashi H, Kakihana M, Yoshimura M (1994) J Am Ceram Soc 77:1067CrossRefGoogle Scholar
  18. 18.
    Si R, Zhang YW, Wang LM, Li SJ, Lin BX, Chu WS, Wu ZY, Yan CH (2007) J Phys Chem B 111:787Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry DepartmentUniversity of CyprusNicosiaCyprus
  2. 2.Elektron Technology CentreLuxfer MEL TechnologiesManchesterUK
  3. 3.Department of Chemical EngineeringUniversity of Patras & FORTH/ICE-HTPatrasGreece

Personalised recommendations