Advertisement

Partial Regeneration of Model TWC After High-Temperature Aging on Engine Bench

  • Evgeny A. Alikin
  • Sergey P. Denisov
  • Aleksey A. Vedyagin
Original Paper
  • 8 Downloads

Abstract

Monometallic rhodium three-way catalyst supported on the ZrCeYLaO2 oxide system was prepared via impregnation method and subjected to high-temperature aging in an engine bench. The aged sample was additionally treated under model fuel-cut conditions, when the temperature was sharply reduced from 1000 °C to a room temperature. This kind of treatment was found to improve the overall catalytic activity and widen the operation window. The activated state of the catalyst was found to be stable and reproducible at repeated aging under hydrothermal conditions. Characterization of the initial and aged samples has shown that the effect of self-reactivation is connected with redistribution of agglomerated rhodium particles non-uniformly distributed on the particles of the ZrCeYLaO2 solid solution. In this case, the disadvantage of the preparation technique is appeared to have positive effect on the catalyst performance.

Notes

Acknowledgements

The study was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of subsidizing agreement of October 23, 2017 (Grant No. 14.581.21.0028, unique agreement identifier RFMEFI58117X0028) of the Federal Target Program Research and development in priority directions of the progress of the scientific and technological complex of Russia for the years 2014–2020.

References

  1. 1.
    Oh SH, Fisher GB, Carpenter JE, Goodman DW (1986) J Catal 100:360–376CrossRefGoogle Scholar
  2. 2.
    Taylor KC (1993) Catal Rev Sci Eng 35:457–481CrossRefGoogle Scholar
  3. 3.
    Shelef M, Graham GW (1994) Catal Rev Sci Eng 36:433–457CrossRefGoogle Scholar
  4. 4.
    Heck RM, Farrauto RJ (2001) Appl Catal A 221:443–457CrossRefGoogle Scholar
  5. 5.
    Gandhi HS, Graham GW, McCabe RW (2003) J Catal 216:433–442CrossRefGoogle Scholar
  6. 6.
    Twigg MV (2006) Appl Catal B 70:2–15CrossRefGoogle Scholar
  7. 7.
    Muraki H, Zhang G (2000) Catal Today 63:337–345CrossRefGoogle Scholar
  8. 8.
    Ševčíková K, Kolářová T, Skála T, Tsud N, Václavů M, Lykhach Y, Matolín V, Nehasil V (2015) Appl Surf Sci 332:747–755CrossRefGoogle Scholar
  9. 9.
    Stoyanovskii VO, Vedyagin AA, Aleshina GI, Volodin AM, Noskov AS (2009) Appl Catal B 90:141–146CrossRefGoogle Scholar
  10. 10.
    Alikin EA, Vedyagin AA (2016) Top Catal 59:1033–1038CrossRefGoogle Scholar
  11. 11.
    Cao Y, Ran R, Wu X, Zhao B, Wan J, Weng D (2013) Appl Catal A 457:52–61CrossRefGoogle Scholar
  12. 12.
    Ramanathan K, Oh SH (2014) Chem Eng Res Des 92:350–361CrossRefGoogle Scholar
  13. 13.
    Matam SK, Newton MA, Weidenkaff A, Ferri D (2013) Catal Today 205:3–9CrossRefGoogle Scholar
  14. 14.
    Marchionni V, Newton MA, Kambolis A, Matam SK, Weidenkaff A, Ferri D (2014) Catal Today 229:80–87CrossRefGoogle Scholar
  15. 15.
    Cimino S, Mancino G, Lisi L (2013) Appl Catal B 138–139:342–352CrossRefGoogle Scholar
  16. 16.
    Lu Y, Matam SK, Chiarello GL, Eggenschwiler PD, Bach C, Weilenmann M, Spiteri A, Weidenkaff A, Ferri D (2013) Catal Commun 39:55–59CrossRefGoogle Scholar
  17. 17.
    Fathali A (2013) Top Catal 56:323–328CrossRefGoogle Scholar
  18. 18.
    Favre C, Zidat S (2004) SAE Technical Paper 2004-01-0138Google Scholar
  19. 19.
    Zheng Q, Farrauto R, Deeba M, Valsamakis I (2015) Catalysts 5:1770–1796CrossRefGoogle Scholar
  20. 20.
    McCabe RW (1995) US Patent 6187709Google Scholar
  21. 21.
    Datye A, Bravo J, Nelson T, Atanasova P, Lyubovsky M, Pfefferle L (2000) Appl Catal A 198:179–196CrossRefGoogle Scholar
  22. 22.
    Daley RA, Christou SY, Efstathiou AM, Anderson JA (2005) Appl Catal B 60:117–127CrossRefGoogle Scholar
  23. 23.
    Anderson JA, Daley RA, Christou SY, Efstathiou AM (2006) Appl Catal B 64:189–200CrossRefGoogle Scholar
  24. 24.
    Lambrou PS, Polychronopoulou K, Petallidou KC, Efstathiou AM (2012) Appl Catal B 111–112:349–359CrossRefGoogle Scholar
  25. 25.
    Kang SB, Han SJ, Nam SB, Nam I-S, Cho BK, Kim CH, Oh SH (2013) Top Catal 56:298–305CrossRefGoogle Scholar
  26. 26.
    Porsin AV, Alikin EA, Bukhtiyarov VI (2016) Catal Sci Technol 6:5891–5898CrossRefGoogle Scholar
  27. 27.
    Oh SH, Carpenter JE (1983) J Catal 80:472–478CrossRefGoogle Scholar
  28. 28.
    Wan CZ, Dettling JC (1987) Stud Surf Sci Catal 30:369CrossRefGoogle Scholar
  29. 29.
    Hangas J, Chen AE (2006) Catal Lett 108:103–111CrossRefGoogle Scholar
  30. 30.
    Shinjoh H, Muraki H, Fujitani Y (1991) Stud Surf Sci Catal 71:617–628CrossRefGoogle Scholar
  31. 31.
    Fajardie F, Tempere J-F, Manoli J-M, Touret O, Djéga-Mariadassou G (1998) Catal Lett 54:187–193CrossRefGoogle Scholar
  32. 32.
    Bernal S, Blanco G, Calvino JJ, López-Cartes C, Pérez-Omil JA, Gatica JM, Stephan O, Colliex C (2001) Catal Lett 76:131–137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ecoalliance LtdNovouralskRussia
  2. 2.Boreskov Institute of Catalysis SB RASNovosibirskRussia

Personalised recommendations