Advertisement

Optical Spectroscopy Methods in the Estimation of the Thermal Stability of Bimetallic Pd–Rh/Al2O3 Three-Way Catalysts

  • Vladimir O. Stoyanovskii
  • Aleksey A. Vedyagin
  • Alexander M. Volodin
  • Roman M. Kenzhin
  • Elena M. Slavinskaya
  • Pavel E. Plyusnin
  • Yury V. Shubin
Original Paper
  • 12 Downloads

Abstract

A series of three-way catalysts containing palladium and rhodium were prepared by an incipient wetness impregnation of support with aqueous solution of [Pd(NH3)4](NO3)2 and Na3[Rh(NO2)6] compounds. Both pure and La-doped aluminum oxides were used as a support. The catalysts showed very close activity under stoichiometric and reductive conditions, but were different in terms of thermal stability being tested in a prompt thermal aging regime. UV–Vis and luminescence spectroscopies were found to be informative for diagnostics of rhodium and palladium concentration and state, thus giving the possibility to follow the changes taking place with active components (migration, agglomeration, bulk diffusion).

Keywords

Three-way catalysts Prompt thermal aging Luminescence spectroscopy UV–Vis spectroscopy Metal migration 

Notes

Acknowledgements

Spectroscopic study was performed under support of the Russian Foundation for Basic Research (grant number 16-08-01283a). Financial support from the Ministry of Science and Higher Education (project number AAAA-A17-117041710086-6) is gratefully acknowledged. Theoretical estimations were carried out within the Governmental Program “Science” of Tomsk Polytechnic University (project No. 4.5200.2017).

References

  1. 1.
    Collins NR, Twigg MV (2007) Three-way catalyst emissions control technologies for spark-ignition engines—recent trends and future developments. Top Catal 42–43:323–332CrossRefGoogle Scholar
  2. 2.
    Maunula T, Vakkilainen A, Lievonen A, Torkkell K, Niskanen K, Härkönen M (1999) Low emission three-way catalyst and OSC material development for OBD diagnostics. SAE Tech Papers 1999-01-3625.  https://doi.org/10.4271/1999-01-3625
  3. 3.
    Maunula T (2013) Intensification of catalytic aftertreatments systems for mobile applications. SAE Tech Papers 2013-01-0530.  https://doi.org/10.4271/2013-01-0530
  4. 4.
    Tan I, Yamamoto M, Yamada K, Tanaka H (1999) Influence of oxygen storage characteristics on automobile emissions. SAE Tech Papers 1999-01-1076.  https://doi.org/10.4271/1999-01-1076
  5. 5.
    Kang SB, Nam I-S, Cho BK, Kim CH, Oh SH (2015) Kinetic model for modern double-layered Pd/Rh TWC as a function of metal loadings and mileage. Chem Eng J 278:328–338CrossRefGoogle Scholar
  6. 6.
    Sathiamoorthy B, Graper A, McIntosh A, Kaminski W (2017) The benefits and challenges faced by aftermarket catalyst manufacturers in implementing advanced coating techniques in TWC (gasoline applications). SAE Tech Papers 2017-01-0921.  https://doi.org/10.4271/2017-01-0921
  7. 7.
    Jobson E, Hjortsberg O, Lennart Andersson S, Gottberg I (1996) Reactions over a double layer tri-metal three-way catalyst. SAE Tech Papers 960801.  https://doi.org/10.4271/960801
  8. 8.
    Wu X, Xu L, Weng D (2004) The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ-Al2O3 automotive catalysts. Appl Surf Sci 221:375–383CrossRefGoogle Scholar
  9. 9.
    Stoyanovskii VO, Vedyagin AA, Aleshina GI, Volodin AM, Noskov AS (2009) Characterization of Rh/Al2O3 catalysts after calcination at high temperatures under oxidizing conditions by luminescence spectroscopy and catalytic hydrogenolysis. Appl Catal B Environ 90:141–146CrossRefGoogle Scholar
  10. 10.
    Vedyagin AA, Volodin AM, Stoyanovskii VO, Mishakov IV, Medvedev DA, Noskov AS (2011) Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Appl Catal B Environ 103:397–403CrossRefGoogle Scholar
  11. 11.
    Alikin EA, Vedyagin AA (2016) High temperature interaction of rhodium with oxygen storage component in three-way catalysts. Top Catal 59:1033–1038CrossRefGoogle Scholar
  12. 12.
    Zheng Q, Farrauto R, Deeba M, Valsamakis I (2015) Part I: a comparative thermal aging study on the regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as model catalysts for automotive three way catalysts. Catalysts 5:1770–1796CrossRefGoogle Scholar
  13. 13.
    Rathod D, Hoffman MA, Onori S (2017) Determining three-way catalyst age using differential lambda signal response. SAE Int J Eng 10(3):1305–1312.  https://doi.org/10.4271/2017-01-0982 CrossRefGoogle Scholar
  14. 14.
    Sabatini S, Kil I, Hamilton T, Wuttke J, Del Rio L, Smith M, Filipi Z, Hoffman MA, Onori S (2016) Characterization of aging effect on three-way catalyst oxygen storage dynamics. SAE Tech Papers 2016-01-0971.  https://doi.org/10.4271/2016-01-0971
  15. 15.
    Kang SB, Han SJ, Nam SB, Nam I-S, Cho BK, Kim CH, Oh SH (2013) Effect of aging atmosphere on thermal sintering of modern commercial TWCs. Top Catal 56:298–305CrossRefGoogle Scholar
  16. 16.
    Birgersson H, Boutonnet M, Klingstedt F, Murzin DY, Stefanov P, Naydenov A (2006) An investigation of a new regeneration method of commercial aged three-way catalysts. Appl Catal B Environ 65:93–100CrossRefGoogle Scholar
  17. 17.
    Van Meel K, Smekens A, Behets M, Kazandjian P, Van Grieken R (2007) Determination of platinum, palladium, and rhodium in automotive catalysts using high-energy secondary target X-ray fluorescence spectrometry. Anal Chem 79:6383–6389CrossRefPubMedGoogle Scholar
  18. 18.
    Stoyanovskii VO, Vedyagin AA, Volodin AM, Kenzhin RM, Shubin YV, Plyusnin PE, Mishakov IV (2017) Peculiarity of Rh bulk diffusion in La-doped alumina and its impact on CO oxidation over Rh/Al2O3. Catal Commun 97:18–22CrossRefGoogle Scholar
  19. 19.
    Stoyanovskii VO, Vedyagin AA, Volodin AM, Kenzhin RM, Bespalko YN, Plyusnin PE, Shubin YV (2018) Optical spectroscopy of Rh3+ ions in the lanthanum-aluminum oxide systems. J Lumin 204:609–617CrossRefGoogle Scholar
  20. 20.
    Boehm HP, Knözinger H, Anderson JR, Boudart M (1983) Catalysis-science and technology, IV. Springer, BerlinGoogle Scholar
  21. 21.
    Gao X, Wachs IE (2000) Investigation of surface structures of supported vanadium oxide catalysts by UV–vis–NIR diffuse reflectance spectroscopy. J Phys Chem B 104:1261–1268CrossRefGoogle Scholar
  22. 22.
    Vedyagin AA, Gavrilov MS, Volodin AM, Stoyanovskii VO, Slavinskaya EM, Mishakov IV, Shubin YV (2013) Catalytic purification of exhaust gases over Pd–Rh alloy catalysts. Top Catal 56:1008–1014CrossRefGoogle Scholar
  23. 23.
    Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Mishakov IV, Plyusnin PE, Shubin YV (2014) Stabilization of active sites in alloyed Pd–Rh catalysts on γ-Al2O3 support. Catal Today 238:80–86CrossRefGoogle Scholar
  24. 24.
    Gaspar AB, Dieguez LC (2000) Dispersion stability and methylcyclopentane hydrogenolysis in Pd/Al2O3 catalysts. Appl Catal A-Gen 201:241–251CrossRefGoogle Scholar
  25. 25.
    Tessier D, Rakai A, Bozon-Verduraz F (1992) Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium–alumina catalysts. J Chem Soc Faraday Trans 88:741–749CrossRefGoogle Scholar
  26. 26.
    Chen J, Zhang Q, Wang Y, Wana H (2008) Size-dependent catalytic activity of supported palladium nanoparticles for aerobic oxidation of alcohols. Adv Synth Catal 350:453–464CrossRefGoogle Scholar
  27. 27.
    Feio LSF, Hori CE, Mattos LV, Zanchet D, Noronha FB, Bueno JMC (2008) Partial oxidation and autothermal reforming of methane on Pd/CeO2–Al2O3 catalysts. Appl Catal A Gen 348:183–192CrossRefGoogle Scholar
  28. 28.
    Okamoto H, Aso T (1967) Formation of thin films of PdO and their electric properties. Jpn J Appl Phys 6:779CrossRefGoogle Scholar
  29. 29.
    Goh EG, Xu X, McCormick PG (2014) Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scripta Mater 78–79:49–52.  https://doi.org/10.1016/j.scriptamat.2014.01.033 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vladimir O. Stoyanovskii
    • 1
  • Aleksey A. Vedyagin
    • 1
    • 2
  • Alexander M. Volodin
    • 1
  • Roman M. Kenzhin
    • 1
  • Elena M. Slavinskaya
    • 1
  • Pavel E. Plyusnin
    • 3
    • 4
  • Yury V. Shubin
    • 3
    • 4
  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussian Federation
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussian Federation
  3. 3.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussian Federation
  4. 4.National Research University-Novosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations