Advertisement

Effect of Ce Addition on MgAl Mixed Oxides for the Total Oxidation of CO and Toluene

  • E. Genty
  • H. Dib
  • J. Brunet
  • C. Poupin
  • S. Siffert
  • R. Cousin
Original Paper
  • 11 Downloads

Abstract

VOC and CO constitute the principal emission during cold-start of vehicles. In order to decrease this emission at low temperature, this study focuses on the development of new catalysts: MgAlCe mixed oxides issued from the calcination of hydrotalcite precursors. Addition of cerium on the MgAl solid increase the reducibility of catalysts inducing a better catalytic reactivity for the CO and toluene total oxidation. Moreover, toluene oxidation is facilitated at low temperature due to a beneficial effect of CO in the reaction mixture.

Keywords

Toluene Carbon monoxide Catalytic oxidation Mixed oxide Cerium 

Notes

Acknowledgements

The University of Littoral – Côte d’Opale (ULCO), and the Pôle Métropolitain de la Côte d’Opale (PMCO) are gratefully acknowledged for research fellowship. The Interreg V project “DepollutAir” (France, Wallonie, Flandres) funded by the European Union is also gratefully acknowledged for financial support. The authors would also like to thank Dr Karine Deboudt and Dr Xavier Secordel for SEM analysis.

References

  1. 1.
    Cao Y (2007) Operation and cold start mechanisms of internal combustion engines with alternative fuels. SAE Tech Pap 01:3609Google Scholar
  2. 2.
    Reiter MS, Kockelman KM (2016) The problem of cold starts: a closer look at mobile source emissions levels. Transp Res D 43:123–132CrossRefGoogle Scholar
  3. 3.
    Liotta LF (2010) Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B 100(3–4):403–412CrossRefGoogle Scholar
  4. 4.
    Liotta LF, Wu H, Pantaleo G, Venezia AM (2013) Co3O4 nanocrystals and Co3O4–MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catal Sci Technol 3(12):3085–3102CrossRefGoogle Scholar
  5. 5.
    Brunet J, Genty E, Barroo C, Cazier F, Poupin C, Siffert S et al (2018) The CoAlCeO mixed oxide: an alternative to palladium-based catalysts for total oxidation of industrial VOCs. Catalysts 8(2):64CrossRefGoogle Scholar
  6. 6.
    Genty E, Cousin R, Capelle S, Gennequin C, Siffert S (2012) Catalytic oxidation of toluene and CO over nanocatalysts derived from hydrotalcite-like compounds (X6 2+Al2 3+): effect of the bivalent cation. Eur J Inorg Chem 16:2802–2811CrossRefGoogle Scholar
  7. 7.
    Brunet J, Genty E, Bugnon L, De Weireld G, Thomas D, Decroly A et al (2016) Co-Al-Ce mixed oxide materials prepared by hydrotalcite way for VOCs total oxidation in micro- and semi-pilot scale. Mater Today Proc 3(2):188–193CrossRefGoogle Scholar
  8. 8.
    Genty E, Brunet J, Pequeux R, Capelle S, Siffert S, Cousin R (2016) Effect of Ce substituted hydrotalcite-derived mixed oxides on total catalytic oxidation of air pollutant. Mater Today Proc 3:277–281CrossRefGoogle Scholar
  9. 9.
    Roelofs JCA, Lensveld DJ, van Dillen AJ, de Jong KP (2001) On the structure of activated hydrotalcites as solid base catalysts for liquid-phase aldol condensation. J Catal 203:184–191CrossRefGoogle Scholar
  10. 10.
    Debecker DP, Gaigneaux EM, Busca G (2009) Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry 15(16):3920–3935CrossRefPubMedGoogle Scholar
  11. 11.
    Genty E, Brunet J, Poupin C, Casale S, Capelle S, Massiani P et al (2015) Co-Al mixed oxides prepared via LDH route using microwaves or ultrasound: application for catalytic toluene total oxidation. Catalysts 5(2):851–867CrossRefGoogle Scholar
  12. 12.
    Daza CE, Moreno S, Molina R (2011) Co-precipitated Ni–Mg–Al catalysts containing Ce for CO2 reforming of methane. Int J Hydrog Energy 36(6):3886–3894CrossRefGoogle Scholar
  13. 13.
    Trovarelli A (2002) Catalysis by ceria and related materials. World Scientific Publishing Company, SingaporeCrossRefGoogle Scholar
  14. 14.
    Lu C-Y, Chang W-C, Wey M-Y (2013) CuO/CeO2 catalysts prepared with different cerium supports for CO oxidation at low temperature. Mater Chem Phys 141(1):512–518CrossRefGoogle Scholar
  15. 15.
    Omata K (1996) Active site of substituted cobalt spinel oxide for selective oxidation of CO/H2. Part II. Appl Catal A 146:255–267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Université du Littoral Côte d’opaleDunkerqueFrance

Personalised recommendations