Advertisement

Topics in Catalysis

, Volume 62, Issue 1–4, pp 86–92 | Cite as

Improvement of Low-Temperature Activity of FeBeta Monolith Catalyst in NH3-SCR of NOx

  • Alina I. Mytareva
  • Dmitriy A. Bokarev
  • Dmitriy S. Krivoruchenko
  • Galina N. Baeva
  • Alexey Yu. Belyankin
  • Alexander Yu. StakheevEmail author
Original Article
  • 136 Downloads

Abstract

FeBeta||Mn–Ce/FeBeta catalyst was prepared by coating cordierite monolith with FeBeta zeolite followed by an impregnation of its downstream part by Mn–Ce solution. The resulting dual-zone catalyst demonstrates improved catalytic performance in the selective catalytic reduction of NOx by NH3 (NH3-SCR) as compared to the parent Fe-Beta. The catalyst exhibits 80–90% NOx conversion and 100% selectivity to N2 within wide temperature ranges: 180–500 °C (at GHSV = 18,000 h−1) and 260–500 °C (at GHSV = 54,000 h−1). Moreover, the dual-zone catalyst provides favorable NH3-slip removal efficiency even at NH3/NO = 1.60.

Keywords

Low-temperature NH3-SCR NH3 oxidation Honeycomb cordierite Monolithic catalyst FeBeta Mn–Ce/FeBeta 

Notes

Acknowledgements

Electron microscopy characterization was performed in the Department of Structural Studies of N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow.

References

  1. 1.
    Alessandro A, Ana RD (2009) Energy 34(3):348–354CrossRefGoogle Scholar
  2. 2.
    Johnson T (2008) Platin Met Rev 52(1):23–37CrossRefGoogle Scholar
  3. 3.
    Gao F, Tang X, Yi H, Zhao S, Li C, Li J, Shi Y, Meng X (2017) Catalysts 7(7):199CrossRefGoogle Scholar
  4. 4.
    Guan B, Zhan R, Lin H, Huang Z (2014) Appl Therm Eng 66(1–2):395–414CrossRefGoogle Scholar
  5. 5.
    Li JH, Chang H, Ma L, Hao JM, Yang RT (2011) Catal Today 175(1):147–156CrossRefGoogle Scholar
  6. 6.
    Fu M, Li C, Lu P, Qu L, Zhang M, Zhou Y, Yu M, Fang Y (2014) Catal Sci Technol 4(1):14–25CrossRefGoogle Scholar
  7. 7.
    Stakheev AYu, Baeva GN, Bragina GO, Teleguina NS, Kustov AL, Grill M, Thøgersen JR (2013) Top Catal 56(1–8):427–433CrossRefGoogle Scholar
  8. 8.
    Salazar M, Becker R, Grünert W (2015) Appl Catal B 165:316–327CrossRefGoogle Scholar
  9. 9.
    Salazar M, Hoffmann S, Tkachenko OP, Becker R, Grünert W (2016) Appl Catal B 182:213–219CrossRefGoogle Scholar
  10. 10.
    Stakheev AYu, Mytareva AI, Bokarev DA, Baeva GN, Krivoruchenko DS, Kustov AL, Grill M, Thøgersen JR (2015) Catal Today 258(Part I):183–189CrossRefGoogle Scholar
  11. 11.
    Mytareva AI, Stakheev AYu, Baeva GN, Bokarev DA, Kustov AL, Thøgersen JR (2016) Top Catal 59(10–12):919–924CrossRefGoogle Scholar
  12. 12.
    Avila P, Montes M, Miró EE (2005) Chem Eng J 109(1–3):11–36CrossRefGoogle Scholar
  13. 13.
    Kashin AS, Ananikov VP (2011) Russ Chem Bull Int Ed 60(12):2602–2607CrossRefGoogle Scholar
  14. 14.
    Krivoruchenko DS, Telegina NS, Bokarev DA, Stakheev AYu (2015) Kinet Catal 56(6):741–746CrossRefGoogle Scholar
  15. 15.
    Sun W, Li X, Mua J, Fan S, Yin Z, Wang X, Qin M, Tadé M, Liu S (2018) J Colloid Interface Sci 531:91–97CrossRefGoogle Scholar
  16. 16.
    Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W (2006) Appl Catal B 62(3–4):265–273CrossRefGoogle Scholar
  17. 17.
    Wu Z, Jin R, Liu Y, Wang H, Catal (2008) Commun 9(13):2217–2220Google Scholar
  18. 18.
    Kapteijn F, Singoredjo L, Andreini A, Moulijn JA (1994) Appl Catal B 3(2–3):173–189CrossRefGoogle Scholar
  19. 19.
    Casapu M, Kröcher O, Elsener M (2009) Appl Catal B 88(3–4):413–419CrossRefGoogle Scholar
  20. 20.
    Mytareva AI, Bokarev DA, Baeva GN, Krivoruchenko DS, Belyankin AYu, Stakheev AYu (2016) Petr Chem 56(3):228–233Google Scholar
  21. 21.
    Kašpar J, Fornasiero P, Hickey N (2003) Catal Today 77(4):419–449CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.N.D. Zelinsky Institute of Organic Chemistry Russian Academy of SciencesMoscowRussia

Personalised recommendations