Topics in Catalysis

, Volume 62, Issue 1–4, pp 86–92 | Cite as

Improvement of Low-Temperature Activity of FeBeta Monolith Catalyst in NH3-SCR of NOx

  • Alina I. Mytareva
  • Dmitriy A. Bokarev
  • Dmitriy S. Krivoruchenko
  • Galina N. Baeva
  • Alexey Yu. Belyankin
  • Alexander Yu. StakheevEmail author
Original Article


FeBeta||Mn–Ce/FeBeta catalyst was prepared by coating cordierite monolith with FeBeta zeolite followed by an impregnation of its downstream part by Mn–Ce solution. The resulting dual-zone catalyst demonstrates improved catalytic performance in the selective catalytic reduction of NOx by NH3 (NH3-SCR) as compared to the parent Fe-Beta. The catalyst exhibits 80–90% NOx conversion and 100% selectivity to N2 within wide temperature ranges: 180–500 °C (at GHSV = 18,000 h−1) and 260–500 °C (at GHSV = 54,000 h−1). Moreover, the dual-zone catalyst provides favorable NH3-slip removal efficiency even at NH3/NO = 1.60.


Low-temperature NH3-SCR NH3 oxidation Honeycomb cordierite Monolithic catalyst FeBeta Mn–Ce/FeBeta 



Electron microscopy characterization was performed in the Department of Structural Studies of N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow.


  1. 1.
    Alessandro A, Ana RD (2009) Energy 34(3):348–354CrossRefGoogle Scholar
  2. 2.
    Johnson T (2008) Platin Met Rev 52(1):23–37CrossRefGoogle Scholar
  3. 3.
    Gao F, Tang X, Yi H, Zhao S, Li C, Li J, Shi Y, Meng X (2017) Catalysts 7(7):199CrossRefGoogle Scholar
  4. 4.
    Guan B, Zhan R, Lin H, Huang Z (2014) Appl Therm Eng 66(1–2):395–414CrossRefGoogle Scholar
  5. 5.
    Li JH, Chang H, Ma L, Hao JM, Yang RT (2011) Catal Today 175(1):147–156CrossRefGoogle Scholar
  6. 6.
    Fu M, Li C, Lu P, Qu L, Zhang M, Zhou Y, Yu M, Fang Y (2014) Catal Sci Technol 4(1):14–25CrossRefGoogle Scholar
  7. 7.
    Stakheev AYu, Baeva GN, Bragina GO, Teleguina NS, Kustov AL, Grill M, Thøgersen JR (2013) Top Catal 56(1–8):427–433CrossRefGoogle Scholar
  8. 8.
    Salazar M, Becker R, Grünert W (2015) Appl Catal B 165:316–327CrossRefGoogle Scholar
  9. 9.
    Salazar M, Hoffmann S, Tkachenko OP, Becker R, Grünert W (2016) Appl Catal B 182:213–219CrossRefGoogle Scholar
  10. 10.
    Stakheev AYu, Mytareva AI, Bokarev DA, Baeva GN, Krivoruchenko DS, Kustov AL, Grill M, Thøgersen JR (2015) Catal Today 258(Part I):183–189CrossRefGoogle Scholar
  11. 11.
    Mytareva AI, Stakheev AYu, Baeva GN, Bokarev DA, Kustov AL, Thøgersen JR (2016) Top Catal 59(10–12):919–924CrossRefGoogle Scholar
  12. 12.
    Avila P, Montes M, Miró EE (2005) Chem Eng J 109(1–3):11–36CrossRefGoogle Scholar
  13. 13.
    Kashin AS, Ananikov VP (2011) Russ Chem Bull Int Ed 60(12):2602–2607CrossRefGoogle Scholar
  14. 14.
    Krivoruchenko DS, Telegina NS, Bokarev DA, Stakheev AYu (2015) Kinet Catal 56(6):741–746CrossRefGoogle Scholar
  15. 15.
    Sun W, Li X, Mua J, Fan S, Yin Z, Wang X, Qin M, Tadé M, Liu S (2018) J Colloid Interface Sci 531:91–97CrossRefGoogle Scholar
  16. 16.
    Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W (2006) Appl Catal B 62(3–4):265–273CrossRefGoogle Scholar
  17. 17.
    Wu Z, Jin R, Liu Y, Wang H, Catal (2008) Commun 9(13):2217–2220Google Scholar
  18. 18.
    Kapteijn F, Singoredjo L, Andreini A, Moulijn JA (1994) Appl Catal B 3(2–3):173–189CrossRefGoogle Scholar
  19. 19.
    Casapu M, Kröcher O, Elsener M (2009) Appl Catal B 88(3–4):413–419CrossRefGoogle Scholar
  20. 20.
    Mytareva AI, Bokarev DA, Baeva GN, Krivoruchenko DS, Belyankin AYu, Stakheev AYu (2016) Petr Chem 56(3):228–233Google Scholar
  21. 21.
    Kašpar J, Fornasiero P, Hickey N (2003) Catal Today 77(4):419–449CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.N.D. Zelinsky Institute of Organic Chemistry Russian Academy of SciencesMoscowRussia

Personalised recommendations