Advertisement

Role of Metal/Oxide Interfaces in Enhancing the Local Oxide Reducibility

  • Philomena Schlexer
  • Antonio Ruiz Puigdollers
  • Gianfranco Pacchioni
Review Article

Abstract

Oxide reducibility is an important property in catalysis by metal-oxides. The reducibility of an oxide can be substantially modified when an interface is created between the oxide and a metal. Here we discuss two types of interfaces. One consists of gold nanoparticles deposited on anatase TiO2 or tetragonal ZrO2 (101) surfaces; these are traditional direct catalysts (metal deposited on an oxide). The second example consists of a metal support, Pt or a Pt3Zr alloy, where a ZrO2 nanofilm is deposited; this is representative of an inverse catalyst (oxide on metal). We designed models of these systems and analyzed by means of first principle calculations a key descriptor of the oxide reducibility, the cost of formation of an oxygen vacancy. We show that this cost is dramatically reduced when the oxide is interfaced with the metal. The effect on catalytic reactions is analyzed by computing the energy profiles for the CO oxidation reaction on Au/TiO2 and Au/ZrO2 model catalysts. Despite the very different nature of the two oxide supports, reducible for TiO2 and non-reducible for ZrO2, the same Au-assisted Mars–van Krevelen mechanism is found, with similar barriers.

Keywords

Metal/oxide interface Au nanoparticles TiO2 ZrO2 Thin films Reducibility 

Notes

Acknowledgements

The work has been supported by the European Community’s Seventh Program (FP7 Nanosciences, Nanotechnologies, Materials and new Production Technologies) FP7/2007–2013 under Grant Agreement No. 607417—European Marie Curie Network CATSENSE, and by the Italian MIUR through the PRIN Project (Ministero dell’Istruzione, dell’Università e della Ricerca) 2015K7FZLH SMARTNESS “Solar driven chemistry: new materials for photo- and electro-catalysis”.

References

  1. 1.
    Wachs IE (2005) Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal Today 100:79–94CrossRefGoogle Scholar
  2. 2.
    Grasselli RK (2002) Fundamental principles of selective heterogeneous oxidation catalysis. Topics Catal 21:79–88CrossRefGoogle Scholar
  3. 3.
    Mars P, Van Krevelen DW (1954) Oxidations carried out by means of vanadium oxide catalysts. Chem Eng Sci 3:41–59CrossRefGoogle Scholar
  4. 4.
    Helali Z, Jedidi A, Syzgantseva OA, Calatayud M, Minot C (2017) Scaling reducibility of metal oxides. Theor Chem Acc 136:100CrossRefGoogle Scholar
  5. 5.
    Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3:2456–2473CrossRefGoogle Scholar
  6. 6.
    Tosoni S, Chen HYT, Puigdollers AR, Pacchioni G (2018) TiO2 and ZrO2 in biomass conversion: why catalyst reduction helps. Philos Trans R Soc A 376:20170056CrossRefGoogle Scholar
  7. 7.
    Tosoni S, Pacchioni G (2016) Acetic acid ketonization on tetragonal zirconia: role of surface reduction. J Catal 344:465–473CrossRefGoogle Scholar
  8. 8.
    Chen HJ, Pacchioni G (2016) Role of oxide reducibility in the deoxygenation of phenol on rutheniun clusters supported on the anatase TiO2 (101) surface. ChemCatChem 8:2492–2499CrossRefGoogle Scholar
  9. 9.
    Puigdollers AR, Illas F, Pacchioni G (2016) Structure and properties of zirconia nanoparticles from density functional theory calculations. J Phys Chem C 120:4392–4402CrossRefGoogle Scholar
  10. 10.
    Ruiz Puigdollers A, Tosoni S, Pacchioni G (2016) Turning a nonreducible into a reducible oxide via nanostructuring: opposite behavior of bulk ZrO2 and ZrO2 nanoparticles toward H2 adsorption. J Phys Chem C 120:15329–15337CrossRefGoogle Scholar
  11. 11.
    Albanese E, Ruiz Puigdollers A, Pacchioni G (2018) Theory of ferromagnetism in reduced ZrO2–x nanoparticles. ACS Omega 3:5301–5307CrossRefGoogle Scholar
  12. 12.
    Rahman MA, Rout S, Thomas JP, McGillivray D, Leung KT (2016) Defect-rich dopant-free ZrO2 nanostructures with superior dilute ferromagnetic semiconductor properties. J Am Chem Soc 138:11896–11906CrossRefGoogle Scholar
  13. 13.
    Ruiz Puigdollers A, Schlexer P, Tosoni S, Pacchioni G (2017) Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal 7:6493–6513CrossRefGoogle Scholar
  14. 14.
    Widmann D, Behm RJ (2011) Active oxygen on a Au/TiO2 catalyst—formation, stability and CO oxidation activity. Angew Chem Int Ed 50:10241–10245CrossRefGoogle Scholar
  15. 15.
    Schlexer P, Widmann D, Behm RJ, Pacchioni G (2018) CO oxidation on a Au/TiO2 nanoparticle catalyst via the Au-assisted Mars-van-Krevelen mechanism. ACS Catal 8:6513–6525CrossRefGoogle Scholar
  16. 16.
    Puigdollers AR, Pacchioni G (2017) CO oxidation on Au nanoparticles supported on ZrO2: role of metal/oxide interface and oxide reducibility. ChemCatChem 9:1119–1127CrossRefGoogle Scholar
  17. 17.
    Puigdollers AR, Pacchioni G (2017) Reducibility of ZrO2/Pt3Zr and ZrO2/Pt 2D films compared to bulk zirconia: a DFT + U study of oxygen removal and H2 adsorption. Nanoscale 9:6866–6876CrossRefGoogle Scholar
  18. 18.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRefGoogle Scholar
  19. 19.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  21. 21.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron energy loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509CrossRefGoogle Scholar
  22. 22.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  23. 23.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  24. 24.
    Tosoni S, Sauer J (2010) Accurate quantum chemical energies for the interaction of hydrocarbons with oxide surfaces: CH4/MgO (001). Phys Chem Chem Phys 12:14330–14340CrossRefGoogle Scholar
  25. 25.
    Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for bader charge allocation. J Comput Chem 28:899–908CrossRefGoogle Scholar
  26. 26.
    Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9986CrossRefGoogle Scholar
  27. 27.
    Predel B (1998) Pt-Zr (platinum-zirconium). Springer materials—the Landbolt–Börnstein database. Springer, Berlin.  https://doi.org/10.1007/10542753_2542 CrossRefGoogle Scholar
  28. 28.
    Haynes MM (2015), CRC handbook of chemistry and physics, 96th edn. CRC Press, Boca RatonGoogle Scholar
  29. 29.
    Haruta M, Daté M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A 222:427–437CrossRefGoogle Scholar
  30. 30.
    Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  31. 31.
    Remediakis IN, Lopez N, Nørskov JK (2005) CO oxidation on rutile-supported Au nanoparticles. Angew Chem 117:1858–1860CrossRefGoogle Scholar
  32. 32.
    Widmann D, Behm RJ (2014) Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc Chem Res 47:740–749CrossRefGoogle Scholar
  33. 33.
    Kotobuki M, Leppelt R, Hansgen D, Widmann D, Behm RJ (2009) Reactive oxygen on a Au/TiO2 supported catalyst. J Catal 264:67–76CrossRefGoogle Scholar
  34. 34.
    Widmann D, Liu Y, Schüth F, Behm RJ (2010) Support cffects in the au catalyzed CO oxidation—correlation between activity, oxygen storage capacity and support reducibility. J Catal 276:292–305CrossRefGoogle Scholar
  35. 35.
    Widmann D, Krautsieder A, Walther P, Brückner A, Behm RJ (2016) How temperature affects the mechanism of CO oxidation on Au/TiO2: a combined EPR and TAP reactor study of the reactive removal of TiO2 surface lattice oxygen in Au/TiO2 by CO. ACS Catal 6:5005–5011CrossRefGoogle Scholar
  36. 36.
    Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD (2014) The Critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345:1599–1602CrossRefGoogle Scholar
  37. 37.
    Daté M, Haruta M (2001) Moisture effect on CO oxidation over Au/TiO2 catalyst. J Catal 201:221–224CrossRefGoogle Scholar
  38. 38.
    Gionco C, Paganini MC, Giamello E, Burgess R, Di Valentin C, Pacchioni G (2013) Paramagnetic defects in polycrystalline zirconia: an EPR and DFT study. Chem Mater 25:2243–2253CrossRefGoogle Scholar
  39. 39.
    Gerosa M, Bottani CE, Caramella L, Onida G, Di Valentin C, Pacchioni G (2015) Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: the case of oxygen vacancies in metal oxides. J Chem Phys 143:134702–134713CrossRefGoogle Scholar
  40. 40.
    Giordano L, Pacchioni G (2011) Oxide films at the nanoscale: new structures, new functions, and new materials. Acc Chem Res 44:1244–1252CrossRefGoogle Scholar
  41. 41.
    Kozlov SM, Demiroglu I, Neyman KM, Bromley ST (2015) Reduced ceria nanofilms from structure prediction. Nanoscale 7:4361–4366CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Giordano L, Pacchioni G, Vittadini A, Sedona F, Finetti P, Granozzi G (2007) The structure of a stoichiometric TiO2 nanophase on Pt (111). Surf Sci 601:3488–3496CrossRefGoogle Scholar
  43. 43.
    Pacchioni G (2012) Two-dimensional oxides: multifunctional materials for advanced technologies. Chem Eur J 18:10144–10158CrossRefGoogle Scholar
  44. 44.
    Antlanger M, Mayr-Schmölzer W, Pavelec J, Mittendorfer F, Redinger J, Varga P, Diebold U, Schmid M (2012) Pt3Zr (0001): a substrate for growing well-ordered ultrathin zirconia films by oxidation. Phys Rev B 86:035451CrossRefGoogle Scholar
  45. 45.
    Li H, Choi JIJ, Mayr-Schmölzer W, Weilach C, Rameshan C, Mittendorfer, Redinger J, Schmidt M, Rupprechter G (2015) Growth of an ultrathin zirconia film on Pt3Zr examined by high-resolution X-ray photoelectron spectroscopy, temperature-programmed desorption, scanning tunneling microscopy, and density functional theory. J Phys Chem C 119:2462–2470Google Scholar
  46. 46.
    Napetschnig E, Schmid M, Varga P (2008) Ultrathin alumina film on Cu-9 at% Al (111). Surf Sci 602:1750–1756CrossRefGoogle Scholar
  47. 47.
    Maurice V, Salmeron M, Somorjai GA (1990) The epitaxial growth of zirconium oxide thin films on Pt (111) single crystal surfaces. Surf Sci 237:116–126CrossRefGoogle Scholar
  48. 48.
    Meinel K, Eichler A, Förster S, Schindler KM, Neddermeyer H, Widdra W (2006) Surface and interface structures of epitaxial ZrO2 films on Pt (111): experiment and density-functional theory calculations. Phys Rev B 74:235444CrossRefGoogle Scholar
  49. 49.
    Hume-Rothery W (1968) The Engel–Brewer theories of metals and alloys. Prog Mat Sci 13:229–265CrossRefGoogle Scholar
  50. 50.
    Pacchioni G (2000) Quantum chemistry of oxide surfaces: from CO chemisorption to the identification of the structure and nature of point defects on MgO. Surf Rev Lett 7:277–306Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienza dei MaterialiUniversità Milano-BicoccaMilanItaly

Personalised recommendations