Topics in Catalysis

, Volume 61, Issue 15–17, pp 1757–1768 | Cite as

Conversion of Palmitic Acid Over Bi-functional Ni/ZSM-5 Catalyst: Effect of Stoichiometric Ni/Al Molar Ratio

  • Manuel Ojeda
  • Nika Osterman
  • Goran Dražić
  • Ljudmila Fele Žilnik
  • Anton Meden
  • Witold Kwapinski
  • Alina M. Balu
  • Blaž Likozar
  • Nataša Novak TušarEmail author
Original Paper


The conversion of the biomass-derived lipid, lignocellulosic and carbohydrate resources into renewable platform intermediates, chemicals and biofuels has been lately increasing in interest. The mechanistic reaction pathways, like hydro-deoxygenation, decarboxylation and hydrocracking, of the selected palmitic acid, as a model fatty acid, over Ni/ZSM-5 zeolite catalysts were studied. The ZSM-5 material with different Al/Si molar ratios was synthesized via a green template-free hydrothermal synthesis procedure, treated and subsequent functionalised with various Ni metal loadings. However, Ni/Al molar ratio was kept stoichiometric (Ni/Al = 0.5). The characteristic physicochemical properties of composite catalysts were studied by numerous characterization techniques, such as X-ray powder diffraction (XRD), scanning-, as well as high-resolution transmission electron microscopy (SEM/HRTEM), and X-ray photoelectron spectroscopy (XPS). NiO with an average particle size of 10–20 nm was found on ZSM-5 support. The relative Ni/Al atom fraction in Ni/ZSM-5 systems influenced their Lewis/Brønsted acidic sites, as well as the external exposed area of prepared heterogeneous structures. Furthermore, the mentioned morphological parameters affected predominant catalytic routes. Species’ production mechanism, as a consequence of Lewis/Brønsted centre weak/strong acidity, as well as their integral concentration, was proposed, mirroring the observed process kinetics, selectivity and turnover. It was demonstrated that the main obtained products were esters, aldehydes, alcohols, hydrocarbons and gases (CO2, CO…), produced by deoxygenation (e.g. decarbonylation), hydrogenation and cracking, less, though, through isomerisation.


Bifunctional Ni/ZSM-5 catalyst Stoichiometric Ni/Al molar ratio Palmitic acid model compound Waste edible oil Reaction pathway mechanism Cracking with deoxygenation 



The authors gratefully acknowledge the financial support of the Slovenian Research Agency (ARRS) (Programs P1-0021, P2-0152, P2-0393), EU COST Action TD1203 and EU COST Action FP1306. Dr. Matjaž Mazaj and Mojca Opresnik from National Institute of Chemistry performed preliminary TEM characterization and nitrogen physisorption measurements, respectively. XPS and acidity characterization were performed at University of Cordoba in Spain. Catalytic tests were performed by James J Leachy at University of Limerick in Ireland.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Yang Y, Ochoa-Hernández C, de la Peña VA, O’Shea JM, Coronado, Serrano DP (2012) ACS Catal 2:592–598CrossRefGoogle Scholar
  2. 2.
    Li S, Wang Y, Dong S, Chen Y, Cao F, Chai F, Wang X (2009) Renewable Energy 34:1871–1876CrossRefGoogle Scholar
  3. 3.
    Arend M, Nonnen T, Hoelderich WF, Fischer J, Groos J (2011) Appl Catal A 399:198–204CrossRefGoogle Scholar
  4. 4.
    Asomaning J, Mussone P, Bressler DC (2014) Fuel Process Technol 120:89–95CrossRefGoogle Scholar
  5. 5.
    Doronin VP, Potapenko OV, Lipin PV, Sorokina TP (2013) Fuel 106:757–765CrossRefGoogle Scholar
  6. 6.
    Yang Y, Wang Q, Zhang X, Wang L, Li G (2013) Fuel Process Technol 116:165–174CrossRefGoogle Scholar
  7. 7.
    Srifa A, Faungnawakij K, Itthibenchapong V, Viriya-empikul N, Charinpanitkul T, Assabumrungrat S (2014) Bioresour Technol 158:81–90CrossRefGoogle Scholar
  8. 8.
    Pinto F, Varela FT, Gonçalves M, Neto R, André P, Costa, Mendes B (2014) Fuel 116:84–93CrossRefGoogle Scholar
  9. 9.
    Feyzi M, Khajavi G (2014) Ind Crop Prod 58:298–304CrossRefGoogle Scholar
  10. 10.
    Roh H-S, Eum I-H, Jeong D-W, Yi BE, Na J-G, Ko CH (2011) Catal Today 164:457–460CrossRefGoogle Scholar
  11. 11.
    Madsen AT, Rozmysłowicz B, Simakova IL, Kilpiö T, Leino A-R, Kordás KN, Eränen K, Mäki-Arvela PI, Murzin DY (2011) Ind Eng Chem Res 50:11049–11058CrossRefGoogle Scholar
  12. 12.
    Mäki-Arvela P, Kubickova I, Snåre M, Eränen K, Murzin DY (2006) Energy Fuels 21:30–41CrossRefGoogle Scholar
  13. 13.
    Snåre M, Kubičková I, Mäki-Arvela P, Eränen K, Murzin DY (2006) Ind Eng Chem Res 45:5708–5715CrossRefGoogle Scholar
  14. 14.
    Morgan T, Grubb D, Santillan-Jimenez E, Crocker M (2010) Top Catal 53:820–829CrossRefGoogle Scholar
  15. 15.
    Hermida L, Abdullah AZ, Mohamed AR (2013) Mater Sci Appl 4:52–62Google Scholar
  16. 16.
    Botas JA, Serrano DP, García A, de Vicente J, Ramos R (2012) Catal Today 195:59–70CrossRefGoogle Scholar
  17. 17.
    Peng B, Zhao C, Kasakov S, Foraita S, Lercher JA (2013) Chem Eur J 19:4732–4741CrossRefGoogle Scholar
  18. 18.
    Vieira SS, Magriotis ZM, Ribeiro MF, Graça I, Fernandes A, Lopes JMFM, Coelho SM, Santos NAV, Saczk AA (2015) Microporous Mesoporous Mater 201:160–168CrossRefGoogle Scholar
  19. 19.
    Chouhan APS, Sarma AK (2011) Renew Sustain Energy Rev 15:4378–4399CrossRefGoogle Scholar
  20. 20.
    Shi Y, Xing E, Cao Y, Liu M, Wu K, Yang M, Wu Y (2017) Chem Eng Sci 166:262–273CrossRefGoogle Scholar
  21. 21.
    Perea DE, Arslan I, Liu J, Ristanović Z, Kovarik L, Arey BW, Lercher JA, Bare SR, Weckhuysen BM (2015) Nature Commun 6:7589CrossRefGoogle Scholar
  22. 22.
    Saravanan K, Tyagi B, Shukla RS, Bajaj HC (2015) Appl Catal B 172–173:108–115CrossRefGoogle Scholar
  23. 23.
    Carmo AC, de Souza LKC, da Costa CEF, Longo E, Zamian JR, da Rocha Filho GN (2009) Fuel 88:461–468CrossRefGoogle Scholar
  24. 24.
    Gui MM, Lee KT, Bhatia S (2008) Energy 33:1646–1653CrossRefGoogle Scholar
  25. 25.
    Cihanoğlu A, Gündüz G, Dükkancı M (2015) Appl Catal B 165:687–699CrossRefGoogle Scholar
  26. 26.
    Qin Z, Lakiss L, Tosheva L, Gilson J-P, Vicente A, Fernandez C, Valtchev V (2014) Adv Funct Mater 24:257–264CrossRefGoogle Scholar
  27. 27.
    Gavrilov VY, Krivoruchko OP, Larina TV, Molina IY, Shutilov RA (2010) Kinet Catal 51:88–97CrossRefGoogle Scholar
  28. 28.
    Baran R, Śrębowata A, Kamińska II, Łomot D, Dzwigaj S (2013) Microporous Mesoporous Mater 180:209–218CrossRefGoogle Scholar
  29. 29.
    Bendezú S, Cid R, Fierro JLG, López A, Agudo (2000) Appl Catal A 197:47–60CrossRefGoogle Scholar
  30. 30.
    Masalska A, Grzechowiak JR, Jaroszewska K (2013) Top Catal 56:981–994CrossRefGoogle Scholar
  31. 31.
    Xiao S, Meng Z (1994) J Chem Soc Faraday Trans 90:2591–2595CrossRefGoogle Scholar
  32. 32.
    Zieliński J (1982) J Catal 76:157–163CrossRefGoogle Scholar
  33. 33.
    Fakin T, Ristić A, Mavrodinova V, Zabukovec N, Logar (2015) Microporous Mesoporous Mater 213:108–117CrossRefGoogle Scholar
  34. 34.
    Yuan HX, Xia QH, Zhan HJ, Lu XH, Su KX (2006) Appl Catal A 304:178–184CrossRefGoogle Scholar
  35. 35.
    Wang J-Y, Zhao F-Y, Liu R-J, Hu Y-Q (2008) J Mol Catal A 279:153–158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Quimica Organica, Facultad de CienciasUniversidad de Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3)CordobaSpain
  2. 2.National Institute of ChemistryLjubljanaSlovenia
  3. 3.Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK
  4. 4.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  5. 5.Chemical Sciences Department, Faculty of Science and Engineering, Bernal InstituteUniversity of LimerickLimerickIreland
  6. 6.University of Nova GoricaNova GoricaSlovenia

Personalised recommendations