Topics in Catalysis

, Volume 61, Issue 15–17, pp 1694–1706 | Cite as

Characterization of CeO2–Fe2O3 Mixed Oxides: Influence of the Dopant on the Structure

  • Rodrigo Brackmann
  • Fabio Souza Toniolo
  • Edivaldo dos Santos Filho
  • Odivaldo Cambraia Alves
  • Ângelo Marcio de Souza Gomes
  • Carla Brandão Woyames
  • Martin SchmalEmail author
Original Paper


CeFex (x = 0, 1, 3, 5, 10, 15 and 20 at.%) mixed oxides synthesized by an adapted Pechini method were characterized by Raman spectroscopy, high-resolution transmission electron microscopy, electron paramagnetic resonance, magnetization and 57Fe Mössbauer spectroscopy (57Fe-MS) measurements in order to evaluate the oxygen vacancies formation and the chemical environment of Fe+3 inserted into the CeO2 crystalline lattice. Fe+3 introduction into the CeO2 structure resulted in an increase of the oxygen vacancies concentration, which indicates that this is the predominant charge compensation mechanism in the formation of CeFex solid solutions by the Pechini method. Fe+3 insertion in CeO2 led to the formation of substitutional solid solutions, in which Fe+3 replaced octahedral Ce+4 sites in the crystalline lattice. Fe+3 could be found in the form of isolated sites with orthorhombic distortion or Fe+3 species in pairs or clusters coupled by strong spin–spin interactions. No evidence of Fe+3 insertion into tetrahedral interstitial sites was found. Isolated Fe+3 species showed a less distorted chemical environment and greater ionic character of the Fe–O bonds than the clusters, being the concentration of both type sites approximately equal for all the Fe+3 doped contents. It was found that pure CeO2 and all the CeFex mixed oxides presented ferromagnetic properties even at room temperature possibly due to their small crystallite size and the presence of oxygen vacancies. At high Fe+3 concentrations (above 10 at.%), probably super-exchange interactions (Fe+3–O−2–Fe+3), with an antiferromagnetic character, also took place, reducing the ferromagnetism of the CeFex mixed oxides.


CeO2 Mixed oxides Oxygen vacancies Ferromagnetism Heterogeneous catalysts 



The authors thank the Foundation for Research Support of the State of Rio de Janeiro (FAPERJ) and the National Counsel of Technological and Scientific Development (CNPq) for financial support (scholarship). We thank Rosa B. Scorzelli for made available the Mössbauer facility at Centro Brasileiro de Pesquisas Físicas (CBPF)—Brazil. The authors also acknowledge Núcleo de Microscopia da COPPE-UFRJ for the use of the facilities.


Funding was provided by Universidade Federal do Rio de Janeiro.


  1. 1.
    Trovarelli A (2002) Catalysis by ceria and related materials (1 ed.), Vol. 2, Imperial College Press, LondonCrossRefGoogle Scholar
  2. 2.
    Aneggi E, Boaro M, de Leitenburg C, Dolcetti G, Trovarelli A (2006) J Alloy Compd 408–412:1096–1102CrossRefGoogle Scholar
  3. 3.
    Mukherjee D, Rao BG, Reddy BM (2017) Top Catal 60:1673–1681CrossRefGoogle Scholar
  4. 4.
    Laguna OH, Centeno MA, Boutonnet M, Odriozola JA (2011) Appl Catal B 106:621–629CrossRefGoogle Scholar
  5. 5.
    Wang J, Zhang B, Shen M, Wang J, Wang W, Ma J, Liu S, Jia L (2011) J Sol-Gel Sci Technol 58:259–268CrossRefGoogle Scholar
  6. 6.
    Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) Catal Today 50:353–367CrossRefGoogle Scholar
  7. 7.
    Yao X, Tang C, Ji Z, Dai Y, Cao Y, Gao F, Dong L, Chen Y (2013) Catal Sci Technol 3:688–698CrossRefGoogle Scholar
  8. 8.
    Wang J, Shen M, Wang J, Cui M, Gao J, Ma J, Liu S (2012) J Environ Sci 24:757–764CrossRefGoogle Scholar
  9. 9.
    Bao H, Chen X, Fang J, Jiang Z, Huang W (2008) Catal Lett 125:160–167CrossRefGoogle Scholar
  10. 10.
    Bao H, Qian K, Fang J, Huang W (2017) Appl Surf Sci 414:131–139CrossRefGoogle Scholar
  11. 11.
    Luo Y, Chen R, Peng W, Tang G, Gao X (2017) Appl Surf Sci 416:911–917CrossRefGoogle Scholar
  12. 12.
    Qiao D, Lu G, Liu X, Guo Y, Wang Y, Guo Y (2011) J Mater Sci 46:3500–3506CrossRefGoogle Scholar
  13. 13.
    Li K, Wang H, Wei Y, Liu M (2008) J Rare Earths 26:245–249CrossRefGoogle Scholar
  14. 14.
    Hong W-J, Ueda M, Iwamoto S, Hosokawa S, Wada K, Kanai H, Deguchi H, Inoue M (2011) Appl Catal B 106:142–148Google Scholar
  15. 15.
    Sahoo TR, Armandi M, Arletti R, Piumetti M, Bensaid S, Manzoli M, Panda SR, Bonelli B (2017) Appl Catal B 211:31–45CrossRefGoogle Scholar
  16. 16.
    Gu Z, Li K, Wang H, Wei Y, Yan D, Qiao T (2013) Kinet Catal 54:326–333CrossRefGoogle Scholar
  17. 17.
    Wang W, Zhu Q, Qin F, Dai Q, Wang X (2018) Chem Eng J 333:226–239CrossRefGoogle Scholar
  18. 18.
    Ilieva L, Pantaleo G, Velinov N, Tabakova T, Petrova P, Ivanov I, Avdeev G, Paneva D, Venezia AM (2015) Appl Catal B 174–175:176–184CrossRefGoogle Scholar
  19. 19.
    Wang Y, Wang F, Chen Y, Zhang D, Li B, Kang S, Li X, Cui L (2014) Appl Catal B 147:602–609CrossRefGoogle Scholar
  20. 20.
    Brackmann R, Toniolo FS, Schmal M (2016) Top Catal 59:1772–1786CrossRefGoogle Scholar
  21. 21.
    Lagarec K, Rancourt DG (1997) Nucl Instrum Methods Phys Res Sect B 129:266–280CrossRefGoogle Scholar
  22. 22.
    Dunlap RA, McGraw JD (2007) J Non-Cryst Solids 353:22–23CrossRefGoogle Scholar
  23. 23.
    Rossano S, Balan E, Morin G, Bauer J-P, Calas G, Brouder C (1999) Phys Chem Miner 26:530–538CrossRefGoogle Scholar
  24. 24.
    Dunlap RA, Sibley ADE (2004) J Non-Cryst Solids 337:36–41CrossRefGoogle Scholar
  25. 25.
    McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435–2441CrossRefGoogle Scholar
  26. 26.
    Shen Q, Lu G, Du C, Guo Y, Wang Y, Guo Y, Gong X (2013) Chem Eng J 218:164–172CrossRefGoogle Scholar
  27. 27.
    Ilieva L, Pantaleo G, Ivanov I, Venezia AM, Andreeva D (2006) Appl Catal B 65:101–109CrossRefGoogle Scholar
  28. 28.
    Minervini L, Zacate MO, Grimes RW (1999) Solid State Ionics 116:339–349CrossRefGoogle Scholar
  29. 29.
    Moog I, Feral-Martin C, Duttine M, Wattiaux A, Prestipino C, Figueroa S, Majimel J, Demourgues A (2014) J Mater Chem A 2:20402–20414CrossRefGoogle Scholar
  30. 30.
    Zhang Z, Han D, Wei S, Zhang Y (2010) J Catal 276:16–23CrossRefGoogle Scholar
  31. 31.
    Liang C, Ma Z, Lin H, Ding L, Qiu J, Frandsen W, Su D (2009) J Mater Chem 19:1417–1424CrossRefGoogle Scholar
  32. 32.
    Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Phys Rev Lett 89:166601-1–166601-4CrossRefGoogle Scholar
  33. 33.
    Venkatesan M, Fitzgerald CB, Coey JMD (2004) Nature 430:630CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu Y, Lockman Z, Aziz A, MacManus-Driscoll J (2008) J Phys: Condens Matter 20:165201–165205Google Scholar
  35. 35.
    Sharma SK, Knobel M, Meneses CT, Kumar S, Kim YJ, Koo BH, Lee CG, Shukla DK (2009) J Korean Phys Soc 55:1018–1021CrossRefGoogle Scholar
  36. 36.
    Paunović N, Dohčević-Mitrović Z, Scurtu R, Aškrabić S, Prekajski M, Matović B, Popović ZV (2012) Nanoscale 4:5469–5476CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Radović M, Dohčević-Mitrović Z, Paunović N, Šćepanović M, Matović B, Popović ZV (2009) Acta Phys Pol A 116:84–87CrossRefGoogle Scholar
  38. 38.
    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao CNR (2006) Phys Rev B 74:161306-1–161306-4CrossRefGoogle Scholar
  39. 39.
    Wang W-C, Chen S-Y, Glans P-A, Guo J, Chen R-J, Fong K-W, Chen C-L, Gloter A, Chang C-L, Chan T-S, Chen J-M, Lee J-F, Dong C-L (2013) Phys Chem Chem Phys 15:14701–14707CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Coey JMD, Douvalis AP, Fitzgerald CB, Venkatesan M (2004) Appl Phys Lett 84:1332–1334CrossRefGoogle Scholar
  41. 41.
    Phokha S, Pinitsoontorn S, Maensiri S (2013) Nano-Micro Lett 5:223–233CrossRefGoogle Scholar
  42. 42.
    Verma KC, Singh J, Ram M, Sharma DK, Sharma A, Kotnala RK (2012) Phys Scr 86:025704–025711CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rodrigo Brackmann
    • 1
    • 2
  • Fabio Souza Toniolo
    • 1
  • Edivaldo dos Santos Filho
    • 3
  • Odivaldo Cambraia Alves
    • 4
  • Ângelo Marcio de Souza Gomes
    • 5
  • Carla Brandão Woyames
    • 6
  • Martin Schmal
    • 1
    Email author
  1. 1.Chemical Engineering Program, Laboratory Nucleus of Catalysis COPPE/UFRJFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of ChemistryFederal University of Technology - Paraná (UTFPR)Pato BrancoBrazil
  3. 3.Institute of Science and TechnologyFederal University of the Valleys of Jequitinhonha and Mucuri (UFVJM)DiamantinaBrazil
  4. 4.Department of Physicochemistry, Chemistry InstituteFluminense Federal University (UFF)NiteróiBrazil
  5. 5.Institute of PhysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
  6. 6.Metallurgical and Materials Engineering Program - COPPE1Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations