Topics in Catalysis

, Volume 61, Issue 15–17, pp 1721–1733 | Cite as

Effect of Ni on MCM-41 in the Adsorption of Nitrogen and Sulfur Compounds to Obtain Ultra-Low-Sulfur Diesel

  • Julio César García-MartínezEmail author
  • H. A. González-Uribe
  • M. M. González-Brambila
  • N. G. Flores del Río
  • A. López-Gaona
  • L. Alvarado-Perea
  • J. A. Colín-Luna
Original Paper


Adsorption of heterocyclic sulfur and nitrogen compounds like dibenzothiophene (DBT) and quinoline (Q), respectively, was carried out using mesostructured adsorbent MCM-41 and Ni/MCM-41 in calcined (C) and reduced (R) form. These materials were proved in a batch adsorption system using a model fuel diesel: a mixture of dodecane, DBT and Q with the same concentrations of ppmw of sulfur and nitrogen at 313 K and atmospheric pressure. When MCM-41 was impregnated with Ni, an important modification of the adsorption properties was observed, for example, the uptake of DBT was increased and this adsorption was twice in Ni/MCM-41 in reduce form than in the calcined form. On the other hand, for the nitrogen adsorption of Q diminished by 62 and 58%, considering Ni/MCM-41 in reduce form and in calcined form as adsorbent, respectively. This is a significant achievement regarding the desulfurization and denitrogenation, especially for commercial diesel without pretreatment. Moreover, the kinetic results were adjusted with second order considering Q as nitrogen and DBT as sulfur molecule. Data fitting for Q was achieved better by the Langmuir model for all materials than the Freundlich model, meanwhile the experimental adsorption data of DBT was fitted to the Freundlich model for Ni/MCM-41 calcinated and reduced form.


Dibenzothiophene Quinoline Adsorption Langmuir Freundlich Hydrodesulfurization 



Julio César García-Martínez would like to thank the Universidad Autónoma Metropolitana Azcapotzalco to the Energy Department and the Programa para el desarrollo profesional Docente (PRODEP) from México.


  1. 1.
    Velu S, Ma X, Song CS, Namazian M, Sethuraman S, Venkataraman G (2005) Energy Fuels 19:1116–1125CrossRefGoogle Scholar
  2. 2.
    Song CS (2003) Catal Today 86(1–4):211–263CrossRefGoogle Scholar
  3. 3.
    Song CS, Ma XL (2003) Appl Catal B 41(1–2):207–238CrossRefGoogle Scholar
  4. 4.
    Liu K, Ng FTT (2010) Catal Today 149:28–34CrossRefGoogle Scholar
  5. 5.
    García-Martínez JC, Castillo-Araiza CO, De los Reyes Heredia JA, Trejo E, Montesinos A (2012) Chem Eng J 210:53–62CrossRefGoogle Scholar
  6. 6.
    Glaucia HCP, Rao Y, Klerk A (2017) Energy Fuels 31:14–36CrossRefGoogle Scholar
  7. 7.
    García-Martínez JC, González-Uribe HA, González-Brambila MM, Colín-Luna JA, Escobedo-García YE, López-Gaona A, Alvarado-Perea L (2018) Catal Today 305:40–48CrossRefGoogle Scholar
  8. 8.
    Wen J, Han X, Lin H, Zheng Y, Chu W (2010) Chem Eng J 164(1):29–36CrossRefGoogle Scholar
  9. 9.
    Jiang J, Ng FTT (2010) Adsorption 16:549–558CrossRefGoogle Scholar
  10. 10.
    Subhan F, Yang Z, Peng P, Ikram M, Rehman S (2014) J Hazard 270:82–91CrossRefGoogle Scholar
  11. 11.
    Almarri M, Ma X, Song Ch (2009) Energy Fuel 23(8):3940–3947CrossRefGoogle Scholar
  12. 12.
    Xiong J, Zhu W, Li H, Yang L, Chao Y, Wu P, Xun S, Jiang W, Zhang M, Li H (2015) J Mater Chem A 3:12738–12747CrossRefGoogle Scholar
  13. 13.
    Kwon JM, Moon JH, Bae YS, Lee DG, Sohn HC, Lee CH (2008) ChemSusChem 1(4):307–309CrossRefGoogle Scholar
  14. 14.
    Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Chem Soc Rev 41:2590–2605CrossRefGoogle Scholar
  15. 15.
    Shahriar S, Han X, Lin H, Zheng Y (2016) Int J Chem React Eng 14(4):823–830Google Scholar
  16. 16.
    Hernández-Maldonado A, Yang R (2003) Ind Eng Chem Res 42:123–129CrossRefGoogle Scholar
  17. 17.
    Subhan F, Liu BS (2011) Chem Eng J 178:69–77CrossRefGoogle Scholar
  18. 18.
    Nair S, Tatarchuk B (2010) Fuel 89:3218–3225CrossRefGoogle Scholar
  19. 19.
    Ma X, Velu S, Kim JH, Song CS (2005) Appl Catal B 56:137–147CrossRefGoogle Scholar
  20. 20.
    Lee SW, Ryu JW, Min W (2003) Catal Surv Asia 7 (4):271–279CrossRefGoogle Scholar
  21. 21.
    Silva JMPF, Silveira EB, Costa ALH, Veloso CO, Henriques CA, Zotin FMZ, Paredes MLL, Reis RA, Chiaro SSX (2014) Ind Eng Chem Res 53:16000–16014CrossRefGoogle Scholar
  22. 22.
    Alvarado-Perea L, Wolff T, Veit P, Hilfert L, Edelmann FT, Hamel C, Seidel-Morgenstern A (2013) J Catal 305:154–168CrossRefGoogle Scholar
  23. 23.
    Yonemitsu M, Tanaka Y, Iwamoto M (1997) Chem Mater 9:2679–2681CrossRefGoogle Scholar
  24. 24.
    Azizian S, Fallah RN (2010) Appl Surf Sci 256(17):5153–5156CrossRefGoogle Scholar
  25. 25.
    Wang L, Wang A (2008) J Hazard Mater 160:173–180CrossRefGoogle Scholar
  26. 26.
    Ho YS, McKay G (1999) Process Biochem 34 (5):451–465CrossRefGoogle Scholar
  27. 27.
    Laredo GC, Vega-Merino PM, Montoya-de la Fuente JA, Mora-Vallejo RJ, Meneses-Ruiz E, Castillo JJ, Zapata-Rendon B (2016) Fuel 180:284–291CrossRefGoogle Scholar
  28. 28.
    Velu S, Song Ch, Engelhard MH, Chin YH (2005) Ind Eng Chem Res 44:5740–5749CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Julio César García-Martínez
    • 1
    Email author
  • H. A. González-Uribe
    • 1
  • M. M. González-Brambila
    • 1
  • N. G. Flores del Río
    • 2
  • A. López-Gaona
    • 3
  • L. Alvarado-Perea
    • 4
  • J. A. Colín-Luna
    • 1
  1. 1.Departamento de EnergíaUniversidad Autónoma Metropolitana AzcapotzalcoMexico CityMexico
  2. 2.Maestría en Ciencias de la IngenieríaUniversidad Autónoma de ZacatecasZacatecasMexico
  3. 3.Departamento de QuímicaUniversidad Autónoma Metropolitana IztapalapaMexico CityMexico
  4. 4.Unidad Académica de Ciencias Químicas y Maestría en Ciencias de la IngenieríaUniversidad Autónoma de ZacatecasZacatecasMexico

Personalised recommendations