Advertisement

Topics in Catalysis

, Volume 61, Issue 15–17, pp 1563–1573 | Cite as

Photoelectrocatalytic Reduction of CO2 to Chemicals via ZnO@Nickel Foam: Controlling C–C Coupling by Ligand or Morphology

  • Jixian Wang
  • Bo Han
  • Rong Nie
  • Yanjie Xu
  • Xiaogang Yu
  • Yapeng Dong
  • Jianguo Wang
  • Huanwang Jing
Original Paper
  • 108 Downloads

Abstract

The CO2 reduction is a very attracting research field in the environmental, material and chemical sciences in light of the energy crisis and greenhouse effect. A new photoelectrocatalytic system composed of a photoanode BiVO4 and a photocathode of nickel foam supported ZnO semiconductor was designed, assembled and applied to CO2 reduction in water. The photocathodes with different morphology could be made from electrochemical deposition method and well characterized by SEM, UV–Vis, XRD, and XPS. The photoelectrocatalytic cell of ZnO/Ni-30|KHCO3|BiVO4 can produce ethanol and acetic acid in a rate of 12.5 µM h−1 cm−2 with 100% selectivity for C2 product, attributing to the controlling of 3D-spaces of nanorod. The cell of A-ZnO/Ni-15|KHCO3|BiVO4 produces ethanol and acetic acid with 75% selectivity for C2 product under 100 mW cm−2 simulated sunlight irradiation, attributing to controlling of both amine ligand and morphology of ZnO, which reveal a new way to increase the selectivity of products.

Keywords

Photoelectrocatalytic CO2 reduction C–C coupling Morphology Ligand 

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China (NSFC 21173106), Natural Science Foundation of Gansu Province (17JR5RA212) and the Foundation of State Key Laboratory of Coal Conversion (J17-18-913-2).

Supplementary material

11244_2018_1018_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1935 KB)

References

  1. 1.
    Chu S, Cui Y, Liu N (2016) The path towards sustainable energy. Nat Mater 16(1):16–22.  https://doi.org/10.1038/nmat4834 CrossRefPubMedGoogle Scholar
  2. 2.
    Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38(1):185–196.  https://doi.org/10.1039/b802262n CrossRefPubMedGoogle Scholar
  3. 3.
    McConnell I, Li G, Brudvig GW (2010) Energy conversion in natural and artificial photosynthesis. Chem Biol 17(5):434–447.  https://doi.org/10.1016/j.chembiol.2010.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang Y, Huang NY, Shen JQ, Liao PQ, Chen XM, Zhang JP (2018) Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J Am Chem Soc 140(1):38–41.  https://doi.org/10.1021/jacs.7b10107 CrossRefPubMedGoogle Scholar
  5. 5.
    Meng X, Yu Q, Liu G, Shi L, Zhao G, Liu H, Li P, Chang K, Kako T, Ye J (2017) Efficient photocatalytic CO2 reduction in all-inorganic aqueous environment: cooperation between reaction medium and Cd(II) modified colloidal ZnS. Nano Energy 34:524–532.  https://doi.org/10.1016/j.nanoen.2017.03.021 CrossRefGoogle Scholar
  6. 6.
    Tamaki Y, Morimoto T, Koike K, Ishitani O (2012) Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proc Natl Acad Sci USA 109(39):15673–15678.  https://doi.org/10.1073/pnas.1118336109 CrossRefPubMedGoogle Scholar
  7. 7.
    Dilla M, Mateblowski A, Ristig S, Strunk J (2017) Photocatalytic CO2 reduction under continuous flow high-purity conditions: influence of light intensity and H2O concentration. ChemCatChem 9(23):4345–4352.  https://doi.org/10.1002/cctc.201701189 CrossRefGoogle Scholar
  8. 8.
    Neatu S, Macia-Agullo JA, Garcia H (2014) Solar light photocatalytic CO2 reduction: general considerations and selected bench-mark photocatalysts. Int J Mol Sci 15(4):5246–5262.  https://doi.org/10.3390/ijms15045246 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Marcì G, García-López EI, Palmisano L (2014) Photocatalytic CO2 reduction in gas–solid regime in the presence of H2O by using GaP/TiO2 composite as photocatalyst under simulated solar light. Catal Commun 53:38–41.  https://doi.org/10.1016/j.catcom.2014.04.024 CrossRefGoogle Scholar
  10. 10.
    Chen LD, Urushihara M, Chan K, Nørskov JK (2016) Electric Field effects in electrochemical CO2 reduction. ACS Catal 6(10):7133–7139.  https://doi.org/10.1021/acscatal.6b02299 CrossRefGoogle Scholar
  11. 11.
    Torelli DA, Francis SA, Crompton JC, Javier A, Thompson JR, Brunschwig BS, Soriaga MP, Lewis NS (2016) Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal 6(3):2100–2104.  https://doi.org/10.1021/acscatal.5b02888 CrossRefGoogle Scholar
  12. 12.
    Vermaas DA, Smith WA (2016) Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane. ACS Energy Lett 1(6):1143–1148.  https://doi.org/10.1021/acsenergylett.6b00557 CrossRefGoogle Scholar
  13. 13.
    Shen Q, Chen Z, Huang X, Liu M, Zhao G (2015) High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays. Environ Sci Technol 49(9):5828–5835.  https://doi.org/10.1021/acs.est.5b00066 CrossRefPubMedGoogle Scholar
  14. 14.
    Cheng J, Zhang M, Wu G, Wang X, Zhou J, Cen K (2014) Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes. Environ Sci Technol 48(12):7076–7084.  https://doi.org/10.1021/es500364g CrossRefPubMedGoogle Scholar
  15. 15.
    Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes. Appl Catal B 64(1–2):139–145.  https://doi.org/10.1016/j.apcatb.2005.11.012 CrossRefGoogle Scholar
  16. 16.
    Jin T, Liu C, Li G (2014) Photocatalytic CO2 reduction using a molecular cobalt complex deposited on TiO2 nanoparticles. Chem Commun (Camb) 50(47):6221–6224.  https://doi.org/10.1039/c4cc00503a CrossRefGoogle Scholar
  17. 17.
    Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA (2012) Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem Commun (Camb) 48(1):58–60.  https://doi.org/10.1039/c1cc16107e CrossRefGoogle Scholar
  18. 18.
    Yamamoto M, Yoshida T, Yamamoto N, Nomoto T, Yamamoto Y, Yagi S, Yoshida H (2015) Photocatalytic reduction of CO2 with water promoted by Ag clusters in Ag/Ga2O3 photocatalysts. J Mater Chem A 3(32):16810–16816.  https://doi.org/10.1039/c5ta04815j CrossRefGoogle Scholar
  19. 19.
    Cao S, Li Y, Zhu B, Jaroniec M, Yu J (2017) Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4. J Catal 349:208–217.  https://doi.org/10.1016/j.jcat.2017.02.005 CrossRefGoogle Scholar
  20. 20.
    Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136(25):8839–8842.  https://doi.org/10.1021/ja5044787 CrossRefPubMedGoogle Scholar
  21. 21.
    Liu L, Zhao H, Andino JM, Li Y (2012) Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal 2(8):1817–1828.  https://doi.org/10.1021/cs300273q CrossRefGoogle Scholar
  22. 22.
    Tu W, Zhou Y, Liu Q, Yan S, Bao S, Wang X, Xiao M, Zou Z (2013) An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv Funct Mater 23(14):1743–1749.  https://doi.org/10.1002/adfm.201202349 CrossRefGoogle Scholar
  23. 23.
    Dhakshinamoorthy A, Navalon S, Corma A, Garcia H (2012) Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ Sci 5(11):9217.  https://doi.org/10.1039/c2ee21948d CrossRefGoogle Scholar
  24. 24.
    Li Y, Wang W-N, Zhan Z, Woo M-H, Wu C-Y, Biswas P (2010) Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl Catal B 100(1–2):386–392.  https://doi.org/10.1016/j.apcatb.2010.08.015 CrossRefGoogle Scholar
  25. 25.
    Billo T, Fu FY, Raghunath P, Shown I, Chen WF, Lien HT, Shen TH, Lee JF, Chan TS, Huang KY, Wu CI, Lin MC, Hwang JS, Lee CH, Chen LC, Chen KH (2018) Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction. Small.  https://doi.org/10.1002/smll.201702928 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang Y, Han B, Xu Y, Zhao D, Jia Y, Nie R, Zhu Z, Chen F, Wang J, Jing H (2017) Artificial photosynthesis of alcohols by multi-functionalized semiconductor photocathodes. ChemSusChem 10 (8):1742–1748.  https://doi.org/10.1002/cssc.201601828 CrossRefPubMedGoogle Scholar
  27. 27.
    Guan G, Kida T, Harada T, Isayama M, Yoshida A (2003) Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Appl Catal A 249(1):11–18.  https://doi.org/10.1016/s0926-860x(03)00205-9 CrossRefGoogle Scholar
  28. 28.
    Wang C, Ranasingha O, Natesakhawat S, Ohodnicki PR Jr, Andio M, Lewis JP, Matranga C (2013) Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 5(15):6968–6974.  https://doi.org/10.1039/c3nr02001k CrossRefPubMedGoogle Scholar
  29. 29.
    Wang L, Zheng Y, Li X, Dong W, Tang W, Chen B, Li C, Li X, Zhang T, Xu W (2011) Nanostructured porous ZnO film with enhanced photocatalytic activity. Thin Solid Films 519(16):5673–5678.  https://doi.org/10.1016/j.tsf.2011.02.070 CrossRefGoogle Scholar
  30. 30.
    Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9(6):2331–2336.  https://doi.org/10.1021/nl900772q CrossRefPubMedGoogle Scholar
  31. 31.
    Martinson AB, Elam JW, Hupp JT, Pellin MJ (2007) ZnO nanotube based dye-sensitized solar cells. Nano Lett 7(8):2183–2187.  https://doi.org/10.1021/nl070160&%23x002B; CrossRefPubMedGoogle Scholar
  32. 32.
    Eley C, Li T, Liao F, Fairclough SM, Smith JM, Smith G, Tsang SC (2014) Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals. Angew Chem 53(30):7838–7842.  https://doi.org/10.1002/anie.201404481 CrossRefGoogle Scholar
  33. 33.
    Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137(13):4288–4291.  https://doi.org/10.1021/jacs.5b00046 CrossRefPubMedGoogle Scholar
  34. 34.
    Gao S, Gu B, Jiao X, Sun Y, Zu X, Yang F, Zhu W, Wang C, Feng Z, Ye B, Xie Y (2017) Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J Am Chem Soc 139(9):3438–3445.  https://doi.org/10.1021/jacs.6b11263 CrossRefPubMedGoogle Scholar
  35. 35.
    Liu Y, Zhang Y, Cheng K, Quan X, Fan X, Su Y, Chen S, Zhao H, Zhang Y, Yu H, Hoffmann MR (2017) Selective electrochemical reduction of carbon dioxide to ethanol on a boron-and nitrogen-co-doped nanodiamond. Angew Chem Int 129(49):15813–15817.  https://doi.org/10.1002/ange.201706311 CrossRefGoogle Scholar
  36. 36.
    Kim D, Kley CS, Li Y, Yang P (2017) Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products. Proc Natl Acad Sci USA 114(40):10560–10565.  https://doi.org/10.1073/pnas.1711493114 CrossRefPubMedGoogle Scholar
  37. 37.
    Huang X, Shen Q, Liu J, Yang N, Zhao G (2016) A CO2 adsorption-enhanced semiconductor/metal-complex hybrid photoelectrocatalytic interface for efficient formate production. Energy Environ Sci 9(10):3161–3171.  https://doi.org/10.1039/c6ee00968a CrossRefGoogle Scholar
  38. 38.
    Liu J, Shi H, Shen Q, Guo C, Zhao G (2017) Efficiently photoelectrocatalyze CO2 to methanol using Ru(II)-pyridyl complex covalently bonded on TiO2 nanotube arrays. Appl Catal B 210:368–378.  https://doi.org/10.1016/j.apcatb.2017.03.060 CrossRefGoogle Scholar
  39. 39.
    Xu Y, Jia Y, Zhang Y, Nie R, Zhu Z, Wang J, Jing H (2017) Photoelectrocatalytic reduction of CO2 to methanol over the multi-functionalized TiO2 photocathodes. Appl Catal B 205:254–261.  https://doi.org/10.1016/j.apcatb.2016.12.039 CrossRefGoogle Scholar
  40. 40.
    Jia Y, Xu Y, Nie R, Chen F, Zhu Z, Wang J, Jing H (2017) Artificial photosynthesis of methanol from carbon dioxide and water via a Nile red-embedded TiO2 photocathode. J Mater Chem A 5(11):5495–5501.  https://doi.org/10.1039/c6ta10231j CrossRefGoogle Scholar
  41. 41.
    Kuang P-Y, Zheng X-J, Lin J, Huang X-B, Li N, Li X, Liu Z-Q (2017) Facile construction of dual p–n junctions in CdS/Cu2O/ZnO photoanode with enhanced charge carrier separation and transfer ability. ACS Omega 2(3):852–863.  https://doi.org/10.1021/acsomega.6b00507 CrossRefGoogle Scholar
  42. 42.
    Tang J, Wang Y, Li J, Da P, Geng J, Zheng G (2014) Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J Mater Chem A 2(17):6153–6157.  https://doi.org/10.1039/c3ta14173j CrossRefGoogle Scholar
  43. 43.
    Marimuthu T, Anandhan N, Thangamuthu R, Surya S (2017) Facile growth of ZnO nanowire arrays and nanoneedle arrays with flower structure on ZnO-TiO2 seed layer for DSSC applications. J Alloys Compd 693:1011–1019.  https://doi.org/10.1016/j.jallcom.2016.09.260 CrossRefGoogle Scholar
  44. 44.
    Al-Gaashani R, Radiman S, Daud AR, Tabet N, Al-Douri Y (2013) XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram Int 39(3):2283–2292.  https://doi.org/10.1016/j.ceramint.2012.08.075 CrossRefGoogle Scholar
  45. 45.
    Wang S, Guan BY, Lu Y, Lou XWD (2017) Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J Am Chem Soc 139(48):17305–17308.  https://doi.org/10.1021/jacs.7b10733 CrossRefPubMedGoogle Scholar
  46. 46.
    Jin A, Jia Y, Chen C, Liu X, Jiang J, Chen X, Zhang F (2017) Efficient photocatalytic hydrogen evolution on band structure tuned polytriazine/heptazine based carbon nitride heterojunctions with ordered needle-like morphology achieved by an in situ molten salt method. J Phys Chem C 121(39):21497–21509.  https://doi.org/10.1021/acs.jpcc.7b07243 CrossRefGoogle Scholar
  47. 47.
    Gong Z-l, Tang D-y, Guo Y-d (2012) The fabrication and self-flocculation effect of hybrid TiO2 nanoparticles grafted with poly(N-isopropylacrylamide) at ambient temperature via surface-initiated atom transfer radical polymerization. J Mater Chem 22(33):16872–16879.  https://doi.org/10.1039/c2jm32168h CrossRefGoogle Scholar
  48. 48.
    Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5(5):7050–7059.  https://doi.org/10.1039/c2ee21234j CrossRefGoogle Scholar
  49. 49.
    Nie R, Ma W, Dong Y, Xu Y, Wang J, Wang J, Jing H (2018) Artificial photosynthesis of methanol via Mn:CdS and CdSeTe quantum dot co-sensitized TiO2 photocathode in imine-based ionic liquid aqueous solution. ChemCatChem.  https://doi.org/10.1002/cctc.201800190 CrossRefGoogle Scholar
  50. 50.
    Fishman G, Calecki D (1989) Surface-induced resistivity of ultrathin metallic films: a limit law. Phys Rev Lett 62(11):1302–1305.  https://doi.org/10.1103/PhysRevLett.62.1302 CrossRefPubMedGoogle Scholar
  51. 51.
    Fujita T, Okada H, Koyama K, Watanabe K, Maekawa S, Chen MW (2008) Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields. Phys Rev Lett 101(16):166601.  https://doi.org/10.1103/PhysRevLett.101.166601 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina
  2. 2.State Key Laboratory of Coal Conversion, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanChina

Personalised recommendations