Advertisement

Topics in Catalysis

, Volume 61, Issue 15–17, pp 1514–1527 | Cite as

Influence of Calcination Temperature on Activity and Selectivity of Ni–CeO2 and Ni–Ce0.8Zr0.2O2 Catalysts for CO2 Methanation

  • Yang Yu
  • Zhoufeng Bian
  • Fujiao Song
  • Juan Wang
  • Qin Zhong
  • Sibudjing Kawi
OriginalPaper
  • 83 Downloads

Abstract

Herein, we studied the influence of calcination temperature (500–800 °C) of Ni/CeO2 and Ni/Ce0.8Zr0.2O2 catalysts on the specific surface area, pore volume, crystalline size, lattice parameter, chemical bonding and oxidation states, nickel dispersion and CH4/CO production rate in CO2 methanation. In general, the catalytic performance revealed that Zr doping catalysts could increase the CH4 production rate. Combined with the production rate and the characterizations results, we found that the combination of nickel dispersion, peak area of CO2–TPD and OII/(OII + OI)) play the critical role in increasing the CH4 production rate. It is well to be mentioned that the CO production rate is strongly influenced by the nickel dispersion. Furthermore, the in-situ DRIFTS confirmed that the CO originates from the decomposition of H-assisted formate species.

Keywords

CO2 methanation Ni/CeO2 Ni/Ce0.8Zr0.2O2 Calcination temperature In-situ DRIFTS 

Notes

Acknowledgements

This work was financially supported by the National University of Singapore and NEA Project (ETRP 1501103, R279-000-491-279), A*STAR for the funding from AME IRG 2017 Project R279-000-509-305, Industry-Academia Cooperation Innovation Fund Projects of Jiangsu Province (BY2016004-09), Jiangsu Province Scientific and Technological Achievements into a Special Fund Project (BA2015062, BA2016055 and BA2017095), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education of Jiangsu Higher Education Institutions. Yang Yu would like to thank the China Scholarship Council for financially supporting his Ph.D. work.

Supplementary material

11244_2018_1010_MOESM1_ESM.docx (118 kb)
Supplementary material 1 (DOCX 117 KB)

References

  1. 1.
    Mikkelsen M, Jorgensen M, Krebs FC (2013) Energy Environ Sci 3:43–81CrossRefGoogle Scholar
  2. 2.
    Wang W, Wang SP, Ma XB, Gong JL (2011) Chem Soc Rev 40:3703–3727CrossRefGoogle Scholar
  3. 3.
    Lunde PJ, Kester FL (1974) Ind Eng Chem Process Des Dev 13:27–33CrossRefGoogle Scholar
  4. 4.
    Ma J, Sun NN, Zhang XL, Zhao N, Xiao FK, Wei W, Sun YH (2009) Catal Today 148:221–231CrossRefGoogle Scholar
  5. 5.
    Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) Chem Rev 115:12936–12973CrossRefGoogle Scholar
  6. 6.
    Zhang ZF, Hu SQ, Song JL, Li WJ, Yang GY, Han BX (2009) ChemSusChem 2:234–238CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li YH, Junge K, Beller M (2013) ChemCatChem 5 pp 1072–1074CrossRefGoogle Scholar
  8. 8.
    An X, Zuo YZ, Zhang Q, Wang DZ, Wang JF (2008) Ind Eng Chem Res 47:547–6554CrossRefGoogle Scholar
  9. 9.
    Song CS (2006) Catal Today 115:2–32CrossRefGoogle Scholar
  10. 10.
    Abe T, Tanizawa M, Watanabe K, Taguchi A (2009) Energy Environ Sci 2:315–321CrossRefGoogle Scholar
  11. 11.
    Kuśmierz M (2008) Catal Today 137:429–432CrossRefGoogle Scholar
  12. 12.
    Du GA, Lim SY, Yang YH, Wang C, Pfefferle L, Haller GL (2007) J Catal 249:370–379CrossRefGoogle Scholar
  13. 13.
    Hetterley RD, Mackey R, Jones JTA, Khimyak YZ, Fogg AM, Kozhevnikov IV (2008) J Catal 258:250–255CrossRefGoogle Scholar
  14. 14.
    Lang YQ, Wang QQ, Xing JM, Zhang B, Liu HZ (2008) AIChE J 54:2303–2309CrossRefGoogle Scholar
  15. 15.
    Wang Q, O’Hare D (2012) Chem Rev 112:4124–4155CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wei M, Zhang X, Evans DG, Duan X, Li XJ, Chen H (2007) AIChE J 53:2916–2924CrossRefGoogle Scholar
  17. 17.
    Ang ML, Oemar U, Saw ET, Mo L, Kathiraser Y, Chia BH, Kawi S (2014) ACS Catal 4:3237–3248CrossRefGoogle Scholar
  18. 18.
    Bian ZF, Suryawinata IY, Kawi S (2016) Appl Catal B 195:1–8CrossRefGoogle Scholar
  19. 19.
    Peebles DE, Goodman DW, White JM (1983) J Phys Chem 87:4378–4387CrossRefGoogle Scholar
  20. 20.
    Marwood M, Doepper R, Renken A (1997) Appl Catal A 151:223–246CrossRefGoogle Scholar
  21. 21.
    Falconer JL, Zagli AE (1980) J Catal 62:280–285CrossRefGoogle Scholar
  22. 22.
    Fujita S, Terunuma H, Kobayashi H, Takezawa N (1987) React Kinet Catal Lett 33:179–184CrossRefGoogle Scholar
  23. 23.
    Schild C, Wokaun A, Baiker A (1990) J Mol Catal 63:243–254CrossRefGoogle Scholar
  24. 24.
    Pan QS, Peng JX, Wang S, Wang SD (2014) Catal Sci Technol 4:502–509CrossRefGoogle Scholar
  25. 25.
    Aldana PAU, Ocampo F, Kobl K, Louis B, Thibault-Starzyk F, Daturi M, Bazin P, Thomas S, Roger AC (2013) Catal Today 215:201–207CrossRefGoogle Scholar
  26. 26.
    Aziz MAA, Jalil AA, Triwahyono S, Sidik SM (2014) Appl Catal A 486:115–122CrossRefGoogle Scholar
  27. 27.
    Tada S, Yokoyama M, Kikuchi R, Haneda T, Kameyama H (2013) J Phys Chem C 117:14652–14658CrossRefGoogle Scholar
  28. 28.
    Yu Y, Zhong L, Zhong Q, Cai W (2016) RSC Adv 6:50680–50687CrossRefGoogle Scholar
  29. 29.
    prymak L, Kalevaru VN, Wohlrab S, Martin A (2015) Catal Sci Technol 5:2322 – 2231CrossRefGoogle Scholar
  30. 30.
    Gabal MA, Angari YM, Al-Juaid SS (2010) J Alloys Compd 492:411–415CrossRefGoogle Scholar
  31. 31.
    Wang SP, Zheng XC, Wang XY, Wang SR, Zhang SM, Yu LH, Huang WP, Wu SH (2005) Catal Let 105:163–168CrossRefGoogle Scholar
  32. 32.
    Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Angew Chem Int Ed 44:2782–2785CrossRefGoogle Scholar
  33. 33.
    Wang N, Shen K, Yu XP, Qian WZ, Chu W (2013) Catal Sci Technol 3:2278–2287CrossRefGoogle Scholar
  34. 34.
    Ashok J, Ang ML, Terence PZL, Kawi S (2016) ChemCatChem 8:1308–1318CrossRefGoogle Scholar
  35. 35.
    Béche E, Charvin P, Peranau D, Abanades S, Flamant G (2008) Surf Interface Anal 40:264–267CrossRefGoogle Scholar
  36. 36.
    Si R, Zhang YW, Li SJ, Lin BX, Yan CH (2004) J Phys Chem B 108:12481–12888CrossRefGoogle Scholar
  37. 37.
    Roh HS, Potdar HS, Jun KW, Kim JW, Oh YS (2004) Appl Cataly A 276:231–239CrossRefGoogle Scholar
  38. 38.
    Pan YX, Liu CJ, Mei DH, Ge QF (2010) Langmuir 26:5551–5558CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Saw ET, Oemar U, Tan XR, Du Y, Borgna A, Hidajat K, Kawi S (2014) J Catal 314:32–46CrossRefGoogle Scholar
  40. 40.
    Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF Rodriguez JA (2014) Science 345:546–550CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Holmgren B, Andersson D, Duprez (1999) Appl Catal B 22:215–230CrossRefGoogle Scholar
  42. 42.
    Li Y, Sakata T, Arai K, Domen KI, Maruya T, Onishi (1989) J Chem Soc Faraday Trans 85:1451–1461CrossRefGoogle Scholar
  43. 43.
    Vimont JC, Lavalley A, Sahibed-Dine CO, Arean MR, Delgado M, Daturi (2005) J Phys Chem B 109:9656–9664CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhu F, Zhu GL, Zhou S (2015) ChemSusChem 8:609–612CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang F, He S, Chen H, Wang B, Zheng LR, Wei M, Evans DG, Duan X (2016) J Am Chem Soc 138:6298–6305CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kitla A, Safonova OV, Föttinger K (2013) Catal Lett 143:517–530CrossRefGoogle Scholar
  47. 47.
    Takano H, Kirihata Y, Izumiya K, Kumagai N, Habazaki H, Hashimoto K (2016) Appl Surf Sci 388:653–663CrossRefGoogle Scholar
  48. 48.
    Resini T, Venkov K, Hadjiivanov S, Presto P, Riani R, Marazza G, Ramis G, Busca (2009) Appl Catal A 353:137–143CrossRefGoogle Scholar
  49. 49.
    Gamarra C, Belver M, Fernández-Garcia A, Martínez-Arias (2011) J Am Chem Soc 129:12064–12065CrossRefGoogle Scholar
  50. 50.
    Hoang L, Berndt H, Lieske H (1995) Catal Lett 31:165–172CrossRefGoogle Scholar
  51. 51.
    Ojamäe L, Aulin C, Pedersen H, Käll PO (2006) J Colloid Interface Sci 296:71–78CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Busca G, Lamotte J, Lavalley J, Lorenzelli V, Erba C (1987) J Am Chem Soc 109:5197–5202CrossRefGoogle Scholar
  53. 53.
    Finocchio M, Daturi C, Binet JC, Lavalley G, Blanchard (1999) Catal Today 52:53–63CrossRefGoogle Scholar
  54. 54.
    Avdeev VI, Parmon VN (2011) J Phys Chem C 115:21755–21762CrossRefGoogle Scholar
  55. 55.
    Benitez JJ, Carrizosa I, Odriozola JA (1993) Appl Surf Sci 68:565–573CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  3. 3.School of Environmental Science and EngineeringYancheng Institute of TechnologyYanchengPeople’s Republic of China

Personalised recommendations