Advertisement

Topics in Catalysis

, Volume 61, Issue 15–17, pp 1624–1632 | Cite as

Enhanced Stability and Propene Yield in Propane Dehydrogenation on PtIn/Mg(Al)O Catalysts with Various In Loadings

  • Weerachon Tolek
  • Kongkiat Suriye
  • Piyasan Praserthdam
  • Joongjai Panpranot
Original Paper
  • 109 Downloads

Abstract

The dehydrogenation of propane on In-promoted Pt (0.3 wt% Pt) supported on hydrotalcite Mg(Al)O with different In loadings (0.2–1.0 wt% In) was investigated at 550 °C atmospheric pressure. All the bimetallic PtIn/Mg(Al)O showed higher propane conversion and propene selectivity than the Pt/Mg(Al)O with Pt0.8In exhibited the best catalytic performances with 97.5% propylene selectivity and 27.5% yield after 5 h time-on-stream. The addition of In to the monometallic Pt catalyst could reduce the acidity strength especially the strong acid site. As revealed by the H2-TPR and XPS results, addition of In by impregnation on Pt/Mg(Al)O also led to the formation of metallic In and PtIn alloy, which greatly enhanced the catalyst activity and reduced coke formation on the support. Nevertheless, excessive In loading (i.e., Pt1.0In) resulted in a descending trend of catalyst activity compared to the Pt0.8In, due probably to the large amount of metallic In being formed, which was disadvantageous in propane dehydrogenation.

Keywords

Propane dehydrogenation Hydrotalcite PtIn bimetallic catalyst XPS Indium 

Notes

Acknowledgements

The authors would like to thank SCG Chemical Co., Ltd. for the scholarship for W.T., the financial supports, and research facilities provided. The financial support from the Thailand Research Fund is also gratefully acknowledged.

References

  1. 1.
    Fattahi M et al (2011) The effect of oxygenate additives on the performance of Pt–Sn/γ-Al2O3 catalyst in the propane dehydrogenation process. Sci Iran 18(6):1377–1383CrossRefGoogle Scholar
  2. 2.
    Zhang Y et al (2006) Effect of alumina binder on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. Ind Eng Chem Res 45(7):2213–2219CrossRefGoogle Scholar
  3. 3.
    Long L-L et al (2014) Improved catalytic stability of PtSnIn/xCa–Al catalysts for propane dehydrogenation to propylene. Chem Eng J 257(0):209–217CrossRefGoogle Scholar
  4. 4.
    Serrano-Ruiz JC, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2007) Bimetallic PtSn/C catalysts promoted by ceria: application in the nonoxidative dehydrogenation of isobutane. J Catal 246(1):158–165CrossRefGoogle Scholar
  5. 5.
    Wu J et al (2014) n-Butane dehydrogenation over Pt/Mg(In)(Al)O. Appl Catal A 470(0):208–214CrossRefGoogle Scholar
  6. 6.
    Praserthdam P, Grisdanurak N, Yuangsawatdikul W (2000) Coke formation over Pt–Sn–K/Al2O3 in C3, C5–C8 alkane dehydrogenation. Chem Eng J 77(3):215–219CrossRefGoogle Scholar
  7. 7.
    Llorca J et al (1999) Supported Pt–Sn catalysts highly selective for isobutane dehydrogenation: preparation, characterization and catalytic behavior. Appl Catal A 189(1):77–86CrossRefGoogle Scholar
  8. 8.
    Stagg SM et al (1997) Isobutane dehydrogenation on Pt–Sn/SiO2 catalysts: effect of preparation variables and regeneration treatments. J Catal 168:75–94CrossRefGoogle Scholar
  9. 9.
    Sahebdelfar S et al (2011) Modeling of adiabatic moving-bed reactor for dehydrogenation of isobutane to isobutene. Appl Catal A 395(1):107–113CrossRefGoogle Scholar
  10. 10.
    Lobera MP et al (2008) Propane dehydrogenation over Pt–Sn–K/γ-Al2O3 catalyst in a two-zone fluidized bed reactor. Ind Eng Chem Res 47(23):9314–9320CrossRefGoogle Scholar
  11. 11.
    Wan L et al (2011) Influence of lanthanum addition on catalytic properties of PtSnK/Al2O3 catalyst for isobutane dehydrogenation. Ind Eng Chem Res 50(8):4280–4285CrossRefGoogle Scholar
  12. 12.
    de Graaf EA et al (2005) Pt0.02Sn0.003Mg0.06 on γ-alumina: a stable catalyst for oxidative dehydrogenation of ethane. Appl Catal A 278(2):187–194CrossRefGoogle Scholar
  13. 13.
    Ahmad I et al (2016) La–Sn oxide nanocatalyst: efficient materials for the synthesis of cyclohexanones. J Mol Liq 224(Part A):359–365CrossRefGoogle Scholar
  14. 14.
    Homs Ns et al (2003) Silica-supported PtSn alloy doped with Ga, In or, Tl: characterization and catalytic behaviour in n-hexane dehydrogenation. J Mol Catal A 200(1):251–259CrossRefGoogle Scholar
  15. 15.
    Jablonski EL et al (1999) Effect of Ga addition to Pt/Al2O3 on the activity, selectivity and deactivation in the propane dehydrogenation. Appl Catal A 183(1):189–198CrossRefGoogle Scholar
  16. 16.
    Pakhomov NA (2001) Reversible and irreversible deactivation of supported bimetallic catalysts for the dehydrogenation of lower paraffins. Kinet Catal 42(3):334–343CrossRefGoogle Scholar
  17. 17.
    Castro AA (1993) Catalysts for the selective dehydrogenation of high molecular weight paraffins. Catal Lett 22(1):123–133CrossRefGoogle Scholar
  18. 18.
    Sun P et al (2010) Synthesis and characterization of a new catalyst Pt/Mg(Ga)(Al)O for alkane dehydrogenation. J Catal 274(2):192–199CrossRefGoogle Scholar
  19. 19.
    Passos FB, Aranda DAG, Schmal M (1998) Characterization and catalytic activity of bimetallic Pt-In/Al2O3 and Pt-Sn/Al2O3 catalysts. J Catal 178(2):478–488CrossRefGoogle Scholar
  20. 20.
    Galvita V et al (2010) Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts. J Catal 271(2):209–219CrossRefGoogle Scholar
  21. 21.
    Wu J, Peng Z, Bell AT (2014) Effects of composition and metal particle size on ethane dehydrogenation over PtxSn100–x/Mg(Al)O (70 ≤ x ≤ 100). J Catal 311:161–168CrossRefGoogle Scholar
  22. 22.
    Akporiaye D et al (2001) A novel, highly efficient catalyst for propane dehydrogenation. Ind Eng Chem Res 40(22):4741–4748CrossRefGoogle Scholar
  23. 23.
    Virnovskaia A et al (2007) Characterization of Pt,Sn/Mg(Al)O catalysts for light alkane dehydrogenation by FT-IR spectroscopy and catalytic measurements. J Phys Chem C 111(40):14732–14742CrossRefGoogle Scholar
  24. 24.
    Wu J et al (2015) Ethane and propane dehydrogenation over PtIr/Mg(Al)O. Appl Catal A 506:25–32CrossRefGoogle Scholar
  25. 25.
    Cortright RD, Hill JM, Dumesic JA (2000) Selective dehydrogenation of isobutane over supported Pt/Sn catalysts. Catal Today 55(3):213–223CrossRefGoogle Scholar
  26. 26.
    de Miguel S et al (1996) FTIR and XPS study of supported PtSn catalysts used for light paraffins dehydrogenation. Catal Lett 36(3):201–206CrossRefGoogle Scholar
  27. 27.
    Shen L-L et al (2017) The effects of calcination temperature of support on PtIn/Mg(Al)O catalysts for propane dehydrogenation reaction. Chem Eng J 324(Supplement C):336–346Google Scholar
  28. 28.
    Xia K et al (2016) The properties and catalytic performance of PtIn/Mg(Al)O catalysts for the propane dehydrogenation reaction: effects of pH value in preparing Mg(Al)O supports by the co-precipitation method. J Catal 338:104–114CrossRefGoogle Scholar
  29. 29.
    Xia K et al (2016) The influences of Mg/Al molar ratio on the properties of PtIn/Mg(Al)O-x catalysts for propane dehydrogenation reaction. Chem Eng J 284:1068–1079CrossRefGoogle Scholar
  30. 30.
    Xia K et al (2015) Analysis of the catalytic activity induction and deactivation of PtIn/Mg(Al)O catalysts for propane dehydrogenation reaction. RSC Adv 5(79):64689–64695CrossRefGoogle Scholar
  31. 31.
    Sun P et al (2011) Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation. J Catal 282(1):165–174CrossRefGoogle Scholar
  32. 32.
    Sattler JJHB et al (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114(20):10613–10653CrossRefGoogle Scholar
  33. 33.
    De Miguel SR et al (1988) Platinum—tin/alumina catalyst: modification of the metallic phase after successive oxidation—reduction cycles. Appl Catal 45(1):61–69CrossRefGoogle Scholar
  34. 34.
    Thomas R et al (1980) On the formation of aluminum tungstate and its presence in tungsten oxide on γ-alumina catalysts. J Catal 61(2):559–561CrossRefGoogle Scholar
  35. 35.
    Lieske H et al (1983) Reactions of platinum in oxygen- and hydrogen-treated Ptγ-Al2O3 catalysts: I. Temperature-programmed reduction, adsorption, and redispersion of platinum. J Catal 81(1):8–16CrossRefGoogle Scholar
  36. 36.
    Jahel A et al (2010) Effect of indium in trimetallic Pt/Al2O3SnIn–Cl naphtha-reforming catalysts. J Catal 272(2):275–286CrossRefGoogle Scholar
  37. 37.
    Hewitt RW, Winograd N (1980) Oxidation of polycrystalline indium studied by X-ray photoelectron spectroscopy and static secondary ion mass spectroscopy. J Appl Phys 51(5):2620–2624CrossRefGoogle Scholar
  38. 38.
    Hollinger G, Skheyta-Kabbani R, Gendry M (1994) Oxides on GaAs and InAs surfaces: an X-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers. Phys Rev B 49(16):11159–11167CrossRefGoogle Scholar
  39. 39.
    Wagner CD (1975) Chemical shifts of Auger lines, and the Auger parameter. Faraday Discuss Chem Soc 60(0):291–300CrossRefGoogle Scholar
  40. 40.
    Zhang Y et al (2013) Propane dehydrogenation over PtSnNa/La-doped Al2O3 catalyst: effect of La content. Fuel Process Technol 111:94–104CrossRefGoogle Scholar
  41. 41.
    Zhang Y et al (2011) Effect of magnesium addition on catalytic performance of PtSnK/γ-Al2O3 catalyst for isobutane dehydrogenation. Fuel Process Technol 92(8):1632–1638CrossRefGoogle Scholar
  42. 42.
    Zhang Y et al (2011) Synergistic effect between Sn and K promoters on supported platinum catalyst for isobutane dehydrogenation. J Nat Gas Chem 20(6):639–646CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  2. 2.SCG Chemicals Co., Ltd.BangkokThailand

Personalised recommendations