Topics in Catalysis

, Volume 61, Issue 15–17, pp 1716–1720 | Cite as

Single-Shell Carbon Nanotubes Covered with Iron Nanoparticles for Ion-Lithium Batteries: Thermodynamic Stability and Charge Transfer

  • Vladislav V. Shunaev
  • Michael M. Slepchenkov
  • Olga E. GlukhovaEmail author
Original Paper


The mathematical model which describes interaction between maghemite particles and CNTs was built on the base of experimental data. It was revealed by the combination of SCC DFTB and NEGF methods that addition of γ-Fe2O3 to sidewalls of semi-conductive CNT leads to sharp decrease in the resistance from 4 MΩ to 13.9 kΩ. It was also found that the growth of the maghemite’s mass ratio in composite γ-Fe2O3/CNT increases the charge transfer between objects. Amount of this charge transfer depends only on the contact area between CNTs and maghemite particles and doesn’t depend on a diameter of maghemite particles. The developed mathematical model can be an effective tool for modification of γ-Fe2O3/CNT synthesis technology with the goal to improve the charge capacity of lithium-ion batteries.


Maghemite nanoparticles Composite material Charge transfer Heat of formation Resistance Mathematical modeling 



The authors gratefully acknowledge funding of this work by Presidential scholarship 2016–2018 (Project No. SP-3135.2016.1).


  1. 1.
    Pohjalainen E, Kallioinen J, Kallio T (2015) Comparative study of carbon free and carbon containing Li4Ti5O12 electrodes. J Power Sources 279:481–486. CrossRefGoogle Scholar
  2. 2.
    Reddy ALM, Shaijumon M, Gowda S, Ajayan P (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nanoletters 9(3):1045–1051. CrossRefGoogle Scholar
  3. 3.
    Varzi A, Bresser D, von Zamory J et al (2014) ZnFe2O4-C/LiFePO4-CNT: a novel high-power lithium-ion battery with excellent cycling performance. Adv Energy Mater 4(10):1400054. CrossRefGoogle Scholar
  4. 4.
    Mauger A, Julien CM (2015) Nanoscience supporting the research on the negative electrodes of Li-ion batteries. Nanomaterials 5(4):2279–2301. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hakimian A, Kamarthi S, Erbis S (2015) Economic analysis of CNT lithium-ion battery manufacturing. Environ Sci 2:463–476. CrossRefGoogle Scholar
  6. 6.
    Erbis S, Kamarthi S, Namin S et al (2016) Sustainable CNT-enabled lithium-ion battery manufacturing: evaluating the tradeoffs. Environ Sci 3:1447–1459. CrossRefGoogle Scholar
  7. 7.
    Grinbom G, Duveau D, Gershinsky G (2015) Silicon/hollow γ-Fe2O3 nanoparticles as efficient anodes for Li-ion batteries. Chem Mater 27(7):2703–2710. CrossRefGoogle Scholar
  8. 8.
    Chernova N, Nolis GM, Omenya FO (2011) What can we learn about battery materials from their magnetic properties? J Mater Chem 21:9865–9875. CrossRefGoogle Scholar
  9. 9.
    Sun Y, Zhang J, Huang T (2013) Fe2O3/CNTs Fe2O3/CNTs composites as anode materials for lithium-ion batteries. Int J Electrochem Sci 8:2918–2931
  10. 10.
    Tavakkoli M, Kallio T, Reynaud O et al (2016) Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. J Mater Chem A 4:5216–5222. CrossRefGoogle Scholar
  11. 11.
    Lv X, Deng J, Wang B et al (2017) γ‑Fe2O3@CNTs anode materials for lithium ion batteries investigated by electron energy loss spectroscopy. Chem Mater 29:3499–3506. CrossRefGoogle Scholar
  12. 12.
    Xu S, Luo G, Jacobs R et al (2017) Ab initio modeling of electrolyte molecule ethylene carbonate decomposition reaction on Li(Ni,Mn,Co)O2 cathode surface. Appl Mater Interfaces 9(24):20545–20553. CrossRefGoogle Scholar
  13. 13.
    Laoire CO, Mukerjee S, Abraham KM (2009) Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C 113(46):20127–20134. CrossRefGoogle Scholar
  14. 14.
    Huan L, Xie J, Huang Z et al (2017) Computational electrochemistry of Pillar[5]quinone cathode material for lithium-ion batteries. Comput Mater Sci 137:233–242. CrossRefGoogle Scholar
  15. 15.
    Elstner M, Porezag D, Jungnickel G et al (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 56:7260. CrossRefGoogle Scholar
  16. 16.
    Zheng G, Witek H, Bobadova-Parvanova P et al (2007) Parameter calibration of transition-metal elements for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method: Sc, Ti, Fe, Co, and Ni. J Chem Theory Comput 3(4):1349–1367. CrossRefPubMedGoogle Scholar
  17. 17.
    Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, Cambridge, p 404CrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
    Pecharromán C, González-Carreño T, Iglesias JE (1995) The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders. Phys Chem Miner 22(1):21–29. CrossRefGoogle Scholar
  21. 21.
    Gerasimov YS, Shorokhov VV, Maresov AG, Soldatov ES, Snigirev OV (2011) Calculation of the mutual capacitance of nanoobjects. J Commun Technol Electron 56(12):1483–1489 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Saratov State UniversitySaratovRussia

Personalised recommendations