Advertisement

Topics in Catalysis

, Volume 61, Issue 15–17, pp 1500–1513 | Cite as

Vanadium Complexes Based Polymer Supported Catalysts: A Brief Account of Research from Our Group

  • Mannar R. Maurya
Original Paper
  • 73 Downloads

Abstract

Solid supported catalysts can go a long way in developing catalyst based technology because of their high efficiency with recyclability and easy separation from the reaction mixture. Immobilizations of homogeneous catalysts through covalent bond with chloromethylated polystyrene cross-linked with divinylbenzene and develop them as environmentally safe heterogeneous catalysts for oxidation reaction have attracted attention in recent years. Recently, effort from our research laboratory was to synthesize new recyclable polymer-supported vanadium complexes based heterogeneous catalysts. Thus, chloromethylated polystyrene cross linked with 5% divinylbenzene was used as support to prepare variety of polymer supported vanadium catalysts. These catalysts have successfully been used for the oxidation and oxidative bromination of various organic substrates. Keeping in mind the industrial usage of these heterogeneous catalysts, the leaching and recycle ability of all polymer-supported catalysts have also been tested. Most catalysts are stable and do not leach during the catalytic reactions.

Keywords

Polymer supported complexes Vanadium complexes Catalysts Oxidation reactions Oxidative halogenation 

Abbreviations

PS–CH2–Cl

Chloromethylated polystyrene cross-linked with divinyl benzene

PS–im

Imidazolomethylpolystyrene

Hhebmz

2-Hydroxyethylbenzimidazole

Hhmbmz

2-Hydroxymethylbenzimidazole

Hhpbmz

2-(2-Hydroxyphenyl)benzimidazole

2-pybmz

2-(2-Pyridyl)benzimidazole

3-pybmz

2-(3-Pyridyl)benzimidazole

Hpan

1-(2-Pyridylazo)-2-naphthol

H2fsal–β-ala

Schiff base derived from 3-formylsalicylic acid and β-alanine

H2fsal–DL-ala

Schiff base derived from 3-formylsalicylic acid and DL-alanine

H2fsal–L-ile

Schiff base derived from 3-formylsalicylic acid and isoleucine

H2sal–his

Schiff base derived from salicylaldehyde and histidine

H2sal–cis

Schiff base derived from salicylaldehyde and cysteine

H2fsal–amp

Schiff base derived from 3-formylsalicylic acid and 2-amino-2-methylpropanol

H2fsal–dmen

Schiff base derived from 3-formylsalicylic acid and N,N-dimethyl ethylenediamine

H2fsal–aepy

Schiff base derived from 3-formylsalicylic acid and 2-aminoethylpyridine

H2fsal–pa

Schiff base derived from 3-formylsalicylic acid and 3-aminopropanol

H2fsal–ea

Schiff base derived from 3-formylsalicylic acid and 2-aminoethanol

H2sal–iah

Schiff base derived from salicylaldehyde and indole-3-acetic hydrazide,

H2sal–bhz

Schiff base derived from salicylaldehyde and benzoylhydrazide

H2sal–inh

Schiff base derived from salicylaldehyde and isonicotinoylhydrazide

H2sal–ohyba

Schiff base derived from salicylaldehyde and o-hydroxybenzylamine

Hacpy–bhz

Schiff base derived from acetylpyridine and benzoylhydrazide

Hacpy–nah

Schiff base derived from acetylpyridine and nicotinoylhydrazide

Hacpy–inh

Schiff base derived from acetylpyridine and isonicotinoylhydrazide

Hacpy–fah

Schiff base derived from acetylpyridine and 2-furoylhydrazide

Hbzpy–bhz

Schiff base derived from benzoylpyridine and benzoylhydrazide

Hbzpy–nah

Schiff base derived from benzoylpyridine and nicotinoylhydrazide

Hbzpy–inh

Schiff base derived from benzoylpyridine and isonicotinoylhydrazide

H2salten

Schiff base derived from salicylaldehyde and diethylenetriamine

H3sal–dahp

Schiff base derived from salicylaldehyde and 1,3-diamino-2-hydroxypropane

Notes

Acknowledgements

M. R. M. thanks the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, New Delhi for financial support of the work (Grant Number EMR/2014/000529).

References

  1. 1.
    Clark JH, Macquarrie DJ (1997) Org Process Res Dev 1:149–162CrossRefGoogle Scholar
  2. 2.
    Maurya MR, Kumar A, Pessoa JC (2011) Coord Chem Rev 255:2315–2344CrossRefGoogle Scholar
  3. 3.
    Trilla M, Pleixats R, Man MWC, Bied C, Moreau JJE (2008) Adv Synth Catal 350:577–590CrossRefGoogle Scholar
  4. 4.
    Jain SL, Rana BS, Singh B, Sinha AK, Bhaumik A, Nandi M, Sain B (2010) Green Chem 12:374–377CrossRefGoogle Scholar
  5. 5.
    Joseph T, Deshpande SS, Halligudi SB, Vinu A, Ernst S, Hartmann M (2003) J Mol Catal A 206:13–21CrossRefGoogle Scholar
  6. 6.
    Joseph T, Halligudi SB (2005) J Mol Catal A 229:241–247CrossRefGoogle Scholar
  7. 7.
    Wang R, Gao B, Jiao W (2009) Appl Surf Sci 255:4109–4113CrossRefGoogle Scholar
  8. 8.
    Moghadam M, Tangestaninejad S, Mirkhani V, Baltork IM, Mirbagheri NS (2010) J Organomet Chem 695:2014–2021CrossRefGoogle Scholar
  9. 9.
    Parihar S, Pathan S, Jadeja RN, Patel A, Gupta VK (2012) Inorg Chem 51:1152–1161CrossRefGoogle Scholar
  10. 10.
    Merrifield RB (1963) J Am Chem Soc 85:2149–2154CrossRefGoogle Scholar
  11. 11.
    Seebach D, Marti RE, Hintermann T (1996) Helv Chim Acta 79:1710–1740CrossRefGoogle Scholar
  12. 12.
    Hinzen B, Ley SV (1997) J Chem Soc Perkin Trans (1) 13:1907–1908CrossRefGoogle Scholar
  13. 13.
    Maurya MR (2012) Curr Org Chem 16:73–88CrossRefGoogle Scholar
  14. 14.
    Maurya MR, Pessoa JC (2011) J Organomet Chem 696:244–254CrossRefGoogle Scholar
  15. 15.
    Pessoa JC, Maurya MR (2017) Inorg Chim Acta 455:415–428CrossRefGoogle Scholar
  16. 16.
    Ramaswamy AV (2002) In: Viswanathan B, Sivasanker S, Ramaswamy AV (eds) Catalysis: principles and applications. Narosa Publishing House, New Delhi, pp 206–219Google Scholar
  17. 17.
    Sherrington DC (2000) Catal Today 57:87–104CrossRefGoogle Scholar
  18. 18.
    Sherrington DC (1988) Pure Appl Chem 60:401–414CrossRefGoogle Scholar
  19. 19.
    Arnold U (2008) Metal species supported on organic polymers as catalysts for the epoxidation of alkenes. In: Mechanisms in homogeneous and heterogeneous epoxidation. Catalysis. Elsevier B.V, Amsterdam, pp 387–411CrossRefGoogle Scholar
  20. 20.
    Sherrington DC, Simpson S (1991) J Catal 131:115–126CrossRefGoogle Scholar
  21. 21.
    Sherrington DC, Simpson S (1993) React Polym 19:13–25CrossRefGoogle Scholar
  22. 22.
    McNamara CA, Dixon MJ, Bradley M (2002) Chem Rev 102:3275–3299CrossRefGoogle Scholar
  23. 23.
    Leadbeater NE, Marco M (2002) Chem Rev 102:3217–3273CrossRefGoogle Scholar
  24. 24.
    Gupta KC, Sutar AK, Lin C-C (2009) Coord Chem Rev 253:1926–1946CrossRefGoogle Scholar
  25. 25.
    Walmsley RS, Hlangothi P, Litwinski C, Nyokong T, Torto N, Tshentu ZR (2013) J Appl Polym Sci 127:4719–4725CrossRefGoogle Scholar
  26. 26.
    Walmsley RS, Litwinski C, Antunes E, Hlangothi P, Hosten E, McCleland C, Nyokong T, Torto N, Tshentu ZR (2013) J Mol Catal A 379:94–102CrossRefGoogle Scholar
  27. 27.
    Salunke SB, Babu NS, Chen CT (2011) Adv Synth Catal 353:1234–1240CrossRefGoogle Scholar
  28. 28.
    Boruah JJ, Kalita D, Das SP, Paul S, Islam NS (2011) Inorg Chem 50:8046–8062CrossRefGoogle Scholar
  29. 29.
    Walmsley RS, Ogunlaja AS, Coombes MJ, Chidawanyika W, Litwinski C, Torto N, Nyokong T, Tshentu ZR (2012) J Mater Chem 22:5792–5800CrossRefGoogle Scholar
  30. 30.
    Ogunlaja AS, Khene S, Antunes E, Nyokong T, Torto N, Tshentu ZR (2013) Appl Catal A 462:157–167CrossRefGoogle Scholar
  31. 31.
    Silva TFS, MacLeod TCO, Martins LMDRS., da Silva MFCG., Schiavon MA, Pombeiro AJL (2013) J Mol Catal A 367:52–60CrossRefGoogle Scholar
  32. 32.
    Islam SM, Molla RA, Roy AS, Ghosh K, Salam N, Iqubal MA, Tuhina K (2014) J Organomet Chem 761:169–178CrossRefGoogle Scholar
  33. 33.
    Esteves MA, Gigante B, Santos C, Guerreiro AM, Baleizão C (2013) Catal Today 218:65–69CrossRefGoogle Scholar
  34. 34.
    Syamal A, Singh MM (1993) React Polym 21:149–158CrossRefGoogle Scholar
  35. 35.
    Maurya MR, Sikarwar S (2007) Catal Commun 8:2017–2024CrossRefGoogle Scholar
  36. 36.
    Maurya MR, Kumar U, Manikandan P (2006) Dalton Trans 3561–3575Google Scholar
  37. 37.
    Maurya MR, Kumar N (2014) J Mol Catal A 383:172–181CrossRefGoogle Scholar
  38. 38.
    Maurya MR, Kumar N, Chaudhary N (2015) Polyhedron 97:103–111CrossRefGoogle Scholar
  39. 39.
    Maurya MR, Chaudhary N, Avecilla F, Correia I (2015) J Inorg Biochem 147:181–192CrossRefGoogle Scholar
  40. 40.
    Maurya MR, Kumar M, Sikarwar S (2008) Catal Commun 10:187–191CrossRefGoogle Scholar
  41. 41.
    Maurya MR, Sikarwar S, Joseph T, Manikandan P, Halligudi SB (2005) React Funct Polym 63:71–83CrossRefGoogle Scholar
  42. 42.
    Maurya MR, Sikarwar S, Manikandan P (2006) Appl Catal A 315:74–82CrossRefGoogle Scholar
  43. 43.
    Maurya MR, Kumar M, Kumar U (2007) J Mol Catal A 273:133–143CrossRefGoogle Scholar
  44. 44.
    Maurya MR, Kumar M, Kumar A, Pessoa JC (2008) Dalton Trans 4220–4232Google Scholar
  45. 45.
    Maurya MR, Sikarwar S (2007) J Mol Catal A 263:175–185CrossRefGoogle Scholar
  46. 46.
    Maurya MR, Kumar U, Manikandan P (2007) Eur J Inorg Chem 2007:2303–2314CrossRefGoogle Scholar
  47. 47.
    Maurya MR, Kumar U, Correia I, Adão P, Pessoa JC (2008) Eur J Inorg Chem 2008:577–587CrossRefGoogle Scholar
  48. 48.
    Maurya MR, Arya A, Kumar U, Kumar A, Avecilla F, Pessoa JC (2009) Dalton Trans 9555–9566Google Scholar
  49. 49.
    Maurya MR, Arya A, Kumar A, Pessoa JC (2009) Dalton Trans 2185–2195Google Scholar
  50. 50.
    Maurya MR, Arya A, Kumar A, Kuznetsov ML, Avecilla F, Pessoa JC (2010) Inorg Chem 49:6586–6600CrossRefGoogle Scholar
  51. 51.
    Maurya MR, Chaudhary N, Kumar A, Avecilla F, Pessoa JC (2014) Inorg Chim Acta 420:24–38CrossRefGoogle Scholar
  52. 52.
    Maurya MR, Chaudhary N, Avecilla F (2014) Polyhedron 67:436–448CrossRefGoogle Scholar
  53. 53.
    Maurya MR, Uprety B, Chaudhary N, Avecilla F (2015) Inorg Chim Acta 434:230–238CrossRefGoogle Scholar
  54. 54.
    Maurya MR, Chaudhary N, Avecilla F, Adão P, Pessoa JC (2015) Dalton Trans 44:1211–1232CrossRefGoogle Scholar
  55. 55.
    Maurya MR, Kumar M, Sikarwar S (2006) React Funct Polym 66:808–818CrossRefGoogle Scholar
  56. 56.
    Müller TE, Beller M (1998) Chem Rev 98:675–703CrossRefGoogle Scholar
  57. 57.
    Maurya MR, Arya A, Adão P, Pessoa JC (2008) Appl Catal A 351:239–252CrossRefGoogle Scholar
  58. 58.
    Hulea V, Dumitriu E (2004) Appl Catal A 277:99–106CrossRefGoogle Scholar
  59. 59.
    Li K, Frost JW (1998) J Am Chem Soc 120:10545–10546CrossRefGoogle Scholar
  60. 60.
    Venkitasubramanian P, Daniels L, Das S, Lamm AS, Rosazza JPN (2008) Enzym Microb Technol 42:130–137CrossRefGoogle Scholar
  61. 61.
    Li T, Rosazza JPN (2000) Appl Environ Microbiol 66:684–687CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Priefert H, Rabenhorst J, Steinbüchel A (2001) Appl Microbiol Biotechnol 56:296–314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations