Advertisement

Topics in Catalysis

, Volume 61, Issue 15–17, pp 1528–1536 | Cite as

A Novel Process for Renewable Methane Production: Combining Direct Air Capture by K2CO3/Alumina Sorbent with CO2 Methanation over Ru/Alumina Catalyst

  • Janna V. Veselovskaya
  • Pavel D. Parunin
  • Olga V. Netskina
  • Aleksey G. Okunev
Original Paper
  • 121 Downloads

Abstract

CO2 methanation over supported ruthenium catalysts is considered to be a promising process for carbon capture and utilization and power-to-gas technologies. In this work 4% Ru/Al2O3 catalyst was synthesized by impregnation of the support with an aqueous solution of Ru(OH)Cl3, followed by liquid phase reduction using NaBH4 and gas phase activation using the stoichiometric mixture of CO2 and H2 (1:4). Kinetics of CO2 methanation reaction over the Ru/Al2O3 catalyst was studied in a perfectly mixed reactor at temperatures from 200 to 300 °C. The results showed that dependence of the specific activity of the catalyst on temperature followed the Arrhenius law. CO2 conversion to methane was shown to depend on temperature, water vapor pressure and CO2:H2 ratio in the gas mixture. The Ru/Al2O3 catalyst was later tested together with the K2CO3/Al2O3 composite sorbent in the novel direct air capture/methanation process, which combined in one reactor consecutive steps of CO2 adsorption from the air at room temperature and CO2 desorption/methanation in H2 flow at 300 or 350 °C. It was demonstrated that the amount of desorbed CO2 was practically the same for both temperatures used, while the total conversion of carbon dioxide to methane was 94.2–94.6% at 300 °C and 96.1–96.5% at 350 °C.

Keywords

Carbon dioxide Direct air capture Sabatier reaction Heterogeneous catalysis Power-to-gas 

Notes

Acknowledgements

Authors would like to thank Dr. Gerasimov E.Yu. for performing HRTEM analysis. The study of a novel DACM process was supported by Russian Science Foundation (project no 17-73-10068). The study of CO2 methanation kinetics over the Ru/Al2O3 catalyst was conducted within the framework of the budget project #АААА-А17-117041710077-4 for Boreskov Institute of Catalysis.

References

  1. 1.
    Solomon S, Plattner GK, Knutti R, Friedlingstein P (2014) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106:1704–1709CrossRefGoogle Scholar
  2. 2.
    Pires JCM, Martins FG, Alvim-Ferraz MCM, Simoes M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460CrossRefGoogle Scholar
  3. 3.
    Sadler TR (2013) Carbon capture and a commercial market for CO2. Int Adv Econ Res 19:189–200CrossRefGoogle Scholar
  4. 4.
    Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727CrossRefGoogle Scholar
  5. 5.
    Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sc 6:1711–1731CrossRefGoogle Scholar
  6. 6.
    Meylan FD, Moreau V, Erkman S (2015) CO2 utilization in the perspective of industrial ecology, an overview. J CO2 Util 12:101–108CrossRefGoogle Scholar
  7. 7.
    Rostrup-Nielsen JR, Pedersen K, Sehested J (2007) High temperature methanation: sintering and structure sensitivity. Appl Catal A 330:134–138CrossRefGoogle Scholar
  8. 8.
    Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv 2:2358–2368CrossRefGoogle Scholar
  9. 9.
    Kowalczyk Z, Stolecki K, Rarog-Pilecka W, Miskiewicz E, Wilczkowska E, Karpiniski Z (2008) Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios. Appl Catal A 342:35–39CrossRefGoogle Scholar
  10. 10.
    Janke C, Duyar MS, Hoskins M, Farrauto R (2014) Catalytic and adsorption studies for the hydrogenation of CO2 to methane. Appl Catal B 152:184–191CrossRefGoogle Scholar
  11. 11.
    Duyar MS, Ramachandran A, Wang C, Farrauto RJ (2015) Kinetics of CO2 methanation over Ru/γ-Al2O3 and implications for renewable energy storage applications. J CO2 Util 12:27–33CrossRefGoogle Scholar
  12. 12.
    Lysikov AI, Okunev AG, Netskina OV (2013) Study of a nickel catalyst under conditions of the SER process: influence of redox cycling. Int J Hydrog Energy 38:10354–10363CrossRefGoogle Scholar
  13. 13.
    Meylan FD, Piguet FP, Erkman S (2017) Power-to-gas through CO2 methanation: assessment of the carbon balance regarding EU directives. J Energy Storage 11:16–24CrossRefGoogle Scholar
  14. 14.
    Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, Stolten D (2015) Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany. Int J Hydrog Energy 40:4285–4294CrossRefGoogle Scholar
  15. 15.
    Götz M, Lefebvre J, Mörs F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390CrossRefGoogle Scholar
  16. 16.
    van der Giesen C, Kleijn R, Kramer GJ (2014) Energy and climate impacts of producing synthetic hydrocarbon fuels from CO2. Environ Sci Tech 48:7111–7121CrossRefGoogle Scholar
  17. 17.
    Duyar MS, Treviño MAA, Farrauto RJ (2015) Dual function materials for CO2 capture and conversion using renewable H2. Appl Catal B 168:370–376CrossRefGoogle Scholar
  18. 18.
    Duyar MS, Wang S, Arellano-Treviño MA, Farrauto RJ (2016) CO2 utilization with a novel dual-function material (DFM) for capture and catalytic conversion to synthetic natural gas: an update. J CO2 Util 15:65–71CrossRefGoogle Scholar
  19. 19.
    Zheng Q, Farrauto R, Chau Nguyen A (2016) Adsorption and methanation of flue gas CO2 with dual functional catalytic materials: a parametric study. Ind Eng Chem Res 55:6768–6776CrossRefGoogle Scholar
  20. 20.
    Wang S, Schrunk ET, Mahajan H (2017) The role of ruthenium in CO2 capture and catalytic conversion to fuel by dual function materials (DFM). Catalysts 7:88CrossRefGoogle Scholar
  21. 21.
    Veselovskaya JV, Parunin PD, Okunev AG (2017) Catalytic process for methane production from atmospheric carbon dioxide utilizing renewable energy. Catal Today 298:117–123CrossRefGoogle Scholar
  22. 22.
    Jones CW (2011) CO2 capture from dilute gases as a component of modern global carbon management. Annu Rev Chem Biomol Eng 2:31–52CrossRefGoogle Scholar
  23. 23.
    Goeppert A, Czaun M, Prakash GKS, Olah GA (2012) Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy Environ Sci 5:7833–7853CrossRefGoogle Scholar
  24. 24.
    Lackner KS, Brennan S, Matter JM, Park AHA, Wright A, van der Zwaan B (2012) The urgency of the development of CO2 capture from ambient air. Proc Natl Acad Sci 109:13156–13162CrossRefGoogle Scholar
  25. 25.
    Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840–11876CrossRefGoogle Scholar
  26. 26.
    de Saint Jean M, Baurens P, Bouallou C (2014) Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis. Int J Hydrog Energy 39:17024–17039CrossRefGoogle Scholar
  27. 27.
    Veselovskaya JV, Derevschikov VS, Kardash TY, Stonkus OA, Trubitsina TA, Okunev AG (2013) Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent. Int J Greenh Gas Control 17:332–340CrossRefGoogle Scholar
  28. 28.
    Lee SC, Choi BY, Lee TJ, Ryu CK, Ahn YS, Kim JC (2006) CO2 absorption and regeneration of alkali metal-based solid sorbents. Catal Today 111:385–390CrossRefGoogle Scholar
  29. 29.
    Nguyen TS, Lefferts L, Gupta KBSS., Seshan K (2015) Catalytic conversion of biomass pyrolysis vapours over sodium-based catalyst: a study on the state of sodium on the catalyst. ChemCatChem 7:1833–1840CrossRefGoogle Scholar
  30. 30.
    Iordan A, Zaki MI, Kappenstein С (1993) Interfacial chemistry in the preparation of catalytic potassium-modified aluminas. J Chem Soc Faraday Trans 89:2527–2536CrossRefGoogle Scholar
  31. 31.
    Veselovskaya JV, Derevschikov VS, Kardash TY, Okunev AG (2015) Direct CO2 capture from ambient air by K2CO3/alumina composite sorbent for synthesis of renewable methane. Renew Biores 3:1CrossRefGoogle Scholar
  32. 32.
    Bali S, Sakwa-Novak MA, Jones CW (2015) Potassium incorporated alumina-based CO2 capture sorbents: comparison with supported amine sorbents under ultra-dilute capture conditions. Colloid Surf A 486:78–85CrossRefGoogle Scholar
  33. 33.
    Rynkowski JM, Paryjczak T, Lenik M (1995) Characterization of alumina supported nickel-ruthenium systems. Appl Catal A 126:257–271CrossRefGoogle Scholar
  34. 34.
    Kuśmierz M (2008) Kinetic study on carbon dioxide hydrogenation over Ru/γ-Al2O3 catalysts. Catal Today 137:429–432CrossRefGoogle Scholar
  35. 35.
    Lunde PJ, Kester FL (1973) Rates of methane formation from carbon dioxide and hydrogen over a ruthenium catalyst. J Catal 30:423–429CrossRefGoogle Scholar
  36. 36.
    Prairie MR, Renken A, Highfield JG, Thampi KR, Grätzel M (1991) A Fourier transform infrared spectroscopic study of CO2 methanation on supported ruthenium. J Catal 129:130–144CrossRefGoogle Scholar
  37. 37.
    Li D, Ichikuni N, Shimazu S, Uematsu T (1998) Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation. Appl Catal A 172:351–358CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations