Topics in Catalysis

, Volume 61, Issue 12–13, pp 1290–1299 | Cite as

How Au Outperforms Pt in the Catalytic Reduction of Methane Towards Ethane and Molecular Hydrogen

  • José I. MartínezEmail author
  • Federico Calle-Vallejo
  • Pedro L. de Andrés
Original Paper


Within the context of a “hydrogen economy”, it is paramount to guarantee a stable supply of molecular hydrogen to devices such as fuel cells. Besides, catalytic conversion of the environmentally harmful methane into ethane, which has a significantly lower Global Warming Potential, is an important endeavour. Herein we propose a novel proof-of-concept mechanism to accomplish both tasks simultaneously. We provide transition-state barriers and reaction Helmholtz free energies obtained from first-principles Density Functional Theory by taking account vibrations for \(2\hbox {CH}_4(\hbox {g}) \rightarrow \hbox {C}_2\hbox {H}_6(\hbox {g}) + \hbox {H}_2(\hbox {g})\) to show that \(\hbox {H}_2\) can be produced by subnanometer \(\hbox {Pt}_{38}\) and \(\hbox {Au}_{38}\) nanoparticles. The active sites for the reaction are located on different planes on the two nanoparticles, thus differentiating the working principle of the two metals. The complete cycle to reduce \(\hbox {CH}_4\) can be performed on Au and Pt with similar efficiencies, but Au requires only half the working temperature of Pt. This sizable decrease of temperature can be traced back to several intermediate steps, in excellent agreement with previous experiments, but most crucially to the final one where the catalyst must be cleaned from H(\(\star\)) to be able to restart the catalytic cycle. This highlights the importance of including in catalytic models the final cleaning steps. In addition, this case study provides guidelines to capitalize on finite-size effects for the design of new and more efficient nanoparticle catalysts.


Nanoparticle catalyst Methane reduction Ethane evolution Hydrogen production Density functional theory Phonons Thermodynamics Transition-state 



This work has been supported by the Spanish MINECO (Grants MAT2014-54231-C4-1-P and MAT2017-85089-C2-1-R), and the EU via the ERC-Synergy Program (Grant ERC-2013-SYG-610256 Nanocosmos) and the EU Graphene Flagship (Grant agreements 696656 Graphene Flagship-core 1 and 785219 Graphene Flagship-core 2). JIM acknowledges funding from Nanocosmos and “Ramón y Cajal” MINECO Program through Grant RYC-2015-17730, and thanks CTI-CSIC for use of computing resources. FC-V thanks “Ramón y Cajal” MINECO Program through Grant RYC-2015-18996.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Han D, Nave S, Jackson B (2013) J Phys Chem A 117(36):8651. CrossRefPubMedGoogle Scholar
  6. 6.
    Anghel AT, Wales DJ, Jenkins SJ, King DA (2005) Phys Rev B 71:113410. CrossRefGoogle Scholar
  7. 7.
    Bengaard H, Nørskov J, Sehested J, Clausen B, Nielsen L, Molenbroek A, Rostrup-Nielsen J (2002) J Catal 209(2):365.
  8. 8.
    Juurlink LBF, McCabe PR, Smith RR, DiCologero CL, Utz AL (1999) Phys Rev Lett 83:868. CrossRefGoogle Scholar
  9. 9.
    Calle-Vallejo F, Martínez JI, García-Lastra JM, Sautet P, Loffreda D (2014) Angew Chem Int Ed 53(32):8316. CrossRefGoogle Scholar
  10. 10.
    Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Dułak M, Thygesen KS, Nørskov JK, Jacobsen KW (2011) Catal Lett 141(8):1067. CrossRefGoogle Scholar
  11. 11.
    Viñes F, Gomes JRB, Illas F (2014) Chem Soc Rev 43:4922. CrossRefPubMedGoogle Scholar
  12. 12.
    Calle-Vallejo F, Sautet P, Loffreda D (2014) J Phys Chem Lett 5(18):3120. CrossRefPubMedGoogle Scholar
  13. 13.
    Calle-Vallejo F, Tymoczko J, Colic V, Vu QH, Pohl MD, Morgenstern K, Loffreda D, Sautet P, Schuhmann W, Bandarenka AS (2015) Science 350(6257):185.
  14. 14.
    Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Science 326(5953):716.
  15. 15.
    Pachauri RK, Reisinger A (2007) IPCC fourth assessment report: climate change 2007 (AR4). Intergovernmental panel on climate change.
  16. 16.
    Aydin M, Verhulst KR, Saltzman ES, Battle MO, Montzka SA, Blake DR, Tang Q, Prather MJ (2011) Nature 476(7359):198. CrossRefPubMedGoogle Scholar
  17. 17.
  18. 18.
    McCollom T (2012) Proc Natl Acad Sci 109(49):E3334.
  19. 19.
    Tsang W, Hampson RF (1986) J Phys Chem Ref Data 15(3):1087. CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Läuter A, Lee K, Jung K, Vatsa R, Mittal J, Volpp HR (2002) Chem Phys Lett 358(34):314.
  22. 22.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys: Condens Matter 21(39):395502.
  23. 23.
    Grimme S (2006) J Comput Chem 27(15):1787. CrossRefPubMedGoogle Scholar
  24. 24.
    Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) J Chem Phys 114(12):5149. CrossRefGoogle Scholar
  25. 25.
    Dunitz JD, Gavezzotti A (1999) Acc Chem Res 32(8):677. CrossRefGoogle Scholar
  26. 26.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865. CrossRefPubMedGoogle Scholar
  27. 27.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758. CrossRefGoogle Scholar
  28. 28.
    Methfessel M, Paxton AT (1989) Phys Rev B 40:3616. CrossRefGoogle Scholar
  29. 29.
    Berne BJ, Cicotti G, Coker DF (eds) (1998) Classical and quantum dynamics in condensed phase simulations. World Scientific Publishing Company.
  30. 30.
    Henkelman G, Jónsson H (2000) J Chem Phys 113:9978. CrossRefGoogle Scholar
  31. 31.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901. CrossRefGoogle Scholar
  32. 32.
    Kardar M (2007) Statistical physics of fields. Cambridge University Press, New YorkCrossRefGoogle Scholar
  33. 33.
    Hill TL (1987) Statistical thermodynamics. Dover, New YorkGoogle Scholar
  34. 34.
    Knudsen J, Nilekar AU, Vang RT, Schnadt J, Kunkes EL, Dumesic JA, Mavrikakis M, Besenbacher F (2007) J Am Chem Soc 129(20):6485. CrossRefPubMedGoogle Scholar
  35. 35.
    Ding K, Gulec A, Johnson AM, Schweitzer NM, Stucky GD, Marks LD, Stair PC (2015) Science 350(6257):189.
  36. 36.
    Andersson KJ, Calle-Vallejo F, Rossmeisl J, Chorkendorff I (2009) J Am Chem Soc 131(6):2404. CrossRefPubMedGoogle Scholar
  37. 37.
    Mu Y, Liang H, Hu J, Jiang L, Wan L (2005) J Phys Chem B 109(47):22212. CrossRefPubMedGoogle Scholar
  38. 38.
    Perez-Alonso FJ, McCarthy DN, Nierhoff A, Hernandez-Fernandez P, Strebel C, Stephens IEL, Nielsen JH, Chorkendorff I (2012) Angew Chem Int Ed 51(19):4641. CrossRefGoogle Scholar
  39. 39.
    Wang X, Yu JC, Yip HY, Wu L, Wong PK, Lai SY (2005) Chem A 11(10):2997. CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Masatake H, Tetsuhiko K, Hiroshi S, Nobumasa Y (1987) Chem Lett 16(2):405. CrossRefGoogle Scholar
  42. 42.
    Falsig H, Hvolbæk B, Kristensen I, Jiang T, Bligaard T, Christensen C, Nørskov J (2008) Angew Chem Int Ed 47(26):4835. CrossRefGoogle Scholar
  43. 43.
    Calle-Vallejo F, Huang M, Henry JB, Koper MTM, Bandarenka AS (2013) Phys Chem Chem Phys 15:3196. CrossRefPubMedGoogle Scholar
  44. 44.
    Lu YC, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) J Am Chem Soc 132(35):12170. CrossRefPubMedGoogle Scholar
  45. 45.
    Fromm E (1998) Poisoning of hydrogen reactions. Springer, Berlin, pp 123–155Google Scholar
  46. 46.
    Thomas JP, Chopin CE (2013) Modeling of hydrogen transport in cracking metal systems. Wiley, New York, pp 223–242. CrossRefGoogle Scholar
  47. 47.
    Martínez JI, Abad E, González C, Flores F, Ortega J (2012) Phys Rev Lett 108:246102. CrossRefPubMedGoogle Scholar
  48. 48.
    Jiang B, Yang M, Xie D, Guo H (2016) Chem Soc Rev 45:3621. CrossRefPubMedGoogle Scholar
  49. 49.
    Nave S, Tiwari AK, Jackson B (2014) J Phys Chem A 118(41):9615. CrossRefPubMedGoogle Scholar
  50. 50.
    Franke JH, Kosov DS (2015) J Chem Phys 142(4):044703. CrossRefPubMedGoogle Scholar
  51. 51.
    Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon-Mucherie S, Redfern PC, Mehmood F, Zapol P (2009) Nat Mater 8(3):213. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • José I. Martínez
    • 1
    Email author
  • Federico Calle-Vallejo
    • 2
  • Pedro L. de Andrés
    • 1
  1. 1.Materials Science FactoryInstitute of Material Science of Madrid (ICMM-CSIC)MadridSpain
  2. 2.Departament de Ciència de Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain

Personalised recommendations