Advertisement

Topics in Catalysis

, Volume 61, Issue 12–13, pp 1362–1374 | Cite as

Reaction and Diffusion Paths of Water and Hydrogen on Rh Covered Black Titania

  • Imre Szenti
  • László Bugyi
  • Zoltán Kónya
Original Paper
  • 54 Downloads

Abstract

The reactions of H2O, H2 D2 and CO with clean and rhodium covered black titania have been investigated by TDS, AES and sensitive temperature programmed work function (TP-WF) measurements to elucidate the complex interactions with this narrow bandgap material promising for visible light energy harvesting. Water formed molecular and dissociative adsorption states with positive outward dipole moments on the reduced, r–TiO2 (110). Surface hydroxyl groups decomposed to H2 and recombined to H2O in a broad temperature range, characterized by TDS peaks at 300, 355–377 and 470 K, which has been associated with surface inhomogeneity. On a strongly reduced, sr–TiO2 (110), a part of H atoms arising from OHa species dissolved in the titania at 200–500 K, and desorbed as H2O with Tp = 570, 670 and 750 K. Sub-monolayer TiOx films produced by stepwise heating on r–TiO2 (110) supported Rh particles suppressed the adsorption of hydrogen, but allowed its spillover to the support. Co-adsorption experiments with D2, H2, H2O and CO on the Rh covered r–TiO2 (110) were also performed. Saturating the Rh by CO at 330 K blocked the uptake of hydrogen on the metal, eliminating its spillover to the support. At 270 K saturation CO exposure removed the pre-adsorbed hydrogen, while at 200 K replaced a part of it decreasing the adsorption bond energy of the rest remained adsorbed. Co-adsorption data proved that the hydrogen desorption states with Tp = 470 and 570 K belong to the decomposition of hydroxyl groups on the r–TiO2 (110) support and at the Rh–TiOx interface, respectively. It is remarkable that the latter state can evolve in the presence of adsorbed CO, which exhibits reactivity towards the same interface.

Keywords

Black titania Hydrogen dissolution Hydrogen spillover Rh–TiOx interface OH decomposition CO coadsorption 

Notes

Acknowledgements

Supports through grants of the Hungarian Scientific Research Fund (OTKA) K120115, GINOP-2.3.2-15-2016-00013 and COST Action CM1104 are gratefully acknowledged.

References

  1. 1.
    Pang CL, Lindsay R, Thornton G (2013) Chem Rev 113:3887–3948CrossRefPubMedGoogle Scholar
  2. 2.
    Chen X, Liu L, Yu PY, Mao SS (2011) Science 331:746CrossRefPubMedGoogle Scholar
  3. 3.
    Liu X, Zhu G, Wang X, Yuan X, Lin T, Huang F (2016) Adv Energy Mater 1600452Google Scholar
  4. 4.
    Fujiwara K, Deligiannakis Y, Skoutelis CG, Pratsinis SE (2014) Appl Catal B - Environ 154–155 9–15Google Scholar
  5. 5.
    Prins R (2012) Chem Rev 112:2714–2738CrossRefPubMedGoogle Scholar
  6. 6.
    Zhu Y, Liu D, Meng M (2014) Chem Commun 50:6049CrossRefGoogle Scholar
  7. 7.
    Mor GK, Varghese OK, Paulose M, Ong KG, Grimes CA (2006) Thin Solid Films 496:42CrossRefGoogle Scholar
  8. 8.
    Rather S, Mehraj-ud-din Z, Zacharia R, Hwang SW, Kim AR, Nahm KS (2009) Int J Hydrog Energy 34:961–966CrossRefGoogle Scholar
  9. 9.
    Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M (2007) Science 318:1757CrossRefPubMedGoogle Scholar
  10. 10.
    Yin X-L, Calatayud M, Qiu H, Wang Y, Birkner A, Minot C, Wöll Ch (2008) Chem Phys Chem 9:253–256CrossRefPubMedGoogle Scholar
  11. 11.
    Du Y, Petrik NG, Deskins NA, Wang Z, Henderson MA, Kimmelb GA, Lyubinetsky I (2012) Phys Chem Chem Phys 14:3066–3074CrossRefPubMedGoogle Scholar
  12. 12.
    Surnev S, Fortunelly A, Netzer FP (2013) Chem Rev 113:4314–4372CrossRefPubMedGoogle Scholar
  13. 13.
    Bugyi L, Óvári L, Kónya Z (2013) Appl Surf Sci 280:60–66CrossRefGoogle Scholar
  14. 14.
    Bugyi L, Szenti I, Kónya Z (2014) Appl Surf Sci 313:432–439CrossRefGoogle Scholar
  15. 15.
    Szenti I, Bugyi L, Kónya Z (2017) Surf Sci 657:1–9CrossRefGoogle Scholar
  16. 16.
    Livneh T, Lilach Y, Asscher M (1999) J Chem Phys 111:11138CrossRefGoogle Scholar
  17. 17.
    Bugyi L, Nemeth R (2011) Surf Sci 605:808CrossRefGoogle Scholar
  18. 18.
    Henderson MA (1996) Langmuir 12:5093–5098CrossRefGoogle Scholar
  19. 19.
    Schaub R, Thostrup P, Lopez N, Lægsgaard E, Stensgaard I, Nørskov JK, Besenbacher F (2001) Phys Rev Lett 87:266104CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hugenschmidt MB, Gamble L, Campbell CT (1994) Surf Sci 302:329CrossRefGoogle Scholar
  21. 21.
    Ketteler G, Yamamoto S, Bluhm H, Andersson K, Starr DE, Ogletree DF, Nilsson HOgasawara,A, Salmeron M (2007) J Phys Chem C 111:8278–8282CrossRefGoogle Scholar
  22. 22.
    Raupp GB, Dumesic JA (1985) J Phys Chem 89:5240CrossRefGoogle Scholar
  23. 23.
    Bugyi L, Berkó A, Óvári L, Kiss AM (2008) J Kiss Surf Sci 602:1650CrossRefGoogle Scholar
  24. 24.
    Yang Y, Sushchikh M, Mills G, Metiu H, McFarland E (2004) Appl Surf Sci 229:346–351CrossRefGoogle Scholar
  25. 25.
    Henderson MA (1999) Surf Sci 419:174CrossRefGoogle Scholar
  26. 26.
    Marques HP, Canário AR, Moutinho AMC, Teodoro OMND. (2009) Appl Surf Sci 255:7389–7393CrossRefGoogle Scholar
  27. 27.
    Tao J, Cuan Q, Gong X-Q, Batzill M (2012) J Phys Chem C 116:20438–20446CrossRefGoogle Scholar
  28. 28.
    Wu Z, Zhang W, Xiong F, Yuan Q, Jin Y, Yang J, Huang W (2014) Phys Chem Chem Phys 16:7051–7057CrossRefPubMedGoogle Scholar
  29. 29.
    Kunat M, Burghaus U, Wöll Ch (2004) Phys Chem Chem Phys 6:4203CrossRefGoogle Scholar
  30. 30.
    Suzuki S, Fukui K, Onishi H, Iwasawa Y (2000) Phys Rev Lett 84:2156CrossRefPubMedGoogle Scholar
  31. 31.
    Li J, Lu G, Wu G, Mao D, Guo Y, Wang Y, Guo Y (2014) Catal Sci Technol 4:1268CrossRefGoogle Scholar
  32. 32.
    Panayotov DA. Yates JT (2007) Chem Phys Lett 436:204–208CrossRefGoogle Scholar
  33. 33.
    Bugyi L, Óvári L, Kiss J (2009) Surf Sci 603:2958CrossRefGoogle Scholar
  34. 34.
    Christmann K (1988) Surf Sci Rep 9:1–163CrossRefGoogle Scholar
  35. 35.
    Schennach RG, Krenn B, Klötzer KD, Rendulic (2003) Surf Sci 540:237CrossRefGoogle Scholar
  36. 36.
    Sterchele S, Bortolus M, Biasi P, Mikkola J-P, Salmi T (2016) CR Chimie 19:1011–1020CrossRefGoogle Scholar
  37. 37.
    Jansen MMM, Gracia J, Nieuwenhuys BE (2009) Phys Chem Chem Phys 11:10009–10016CrossRefPubMedGoogle Scholar
  38. 38.
    Farstad MH, Ragazzon D, Walle LE, Schaefer A, Sandell A, Borg A (2015) J Phys Chem C 119:6660–6669CrossRefGoogle Scholar
  39. 39.
    Berkó A, Gubó R, Óvári L, Bugyi L, Szenti I, Kónya Z (2013) Langmuir 29:15868–15877CrossRefPubMedGoogle Scholar
  40. 40.
    Millot F, Picard C (1988) Solid State Ion 28–30:1344–1348CrossRefGoogle Scholar
  41. 41.
    Berkó A, Bíró T, Solymosi F (2000) J Phys Chem B 104:2506CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations