Advertisement

Topics in Catalysis

, Volume 61, Issue 12–13, pp 1323–1334 | Cite as

Graphite Oxide-TiO2 Nanocomposite Type Photocatalyst for Methanol Photocatalytic Reforming Reaction

  • Katalin Majrik
  • Árpád Turcsányi
  • Zoltán Pászti
  • Tamás Szabó
  • Attila Domján
  • Judith Mihály
  • András Tompos
  • Imre Dékány
  • Emília Tálas
Original Paper
  • 104 Downloads

Abstract

Graphite-oxide/TiO2 (GO/TiO2) composite materials were prepared by heterocoagulation method from Brodie’s graphite-oxide (GO) in order to test them as catalysts in the methanol photocatalytic reforming reaction in liquid phase. The preparation of the composite itself resulted in only little changes in the structure of GO as it was indicated by attenuated total reflection infrared (ATR-IR) and 13C magic-angle spinning nuclear magnetic resonance (13C MAS NMR) spectroscopic measurements. However, during the photocatalytic reaction, all of the GO/TiO2 samples darkened strongly indicating structural changes of GO. X-ray photoelectron spectroscopy along with NMR confirmed the loss of oxygen functionalities and emergence of graphitic species in the samples recovered from the photocatalytic reaction. Model experiments were designed to identify the key factors determining the activity of the GO/TiO2 derived photocatalysts. It was found that the emergence of a pronounced coupling between TiO2 and the graphite-like carbonaceous material is the most important contribution to get active and stable photocatalysts.

Keywords

Graphite oxide TiO2 Methanol Hydrogen XPS MAS NMR 

Notes

Acknowledgements

The research within project No VEKOP-2.3.2-16-2017-00013 was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund. Financial support by the National Research, Development and Innovation Office (Hungary) via the grant FK-124851 is greatly acknowledged. The authors thank Ágnes Veres for her aid in sample preparation, Gábor P. Szijjártó for the help in the operation of the photocatalytic reactor system and Ildikó Turi for the technical assistance.

Supplementary material

11244_2018_989_MOESM1_ESM.docx (579 kb)
Supplementary material 1 (DOCX 578 KB)

References

  1. 1.
    Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sustain Energy Rev 16:3024–3033CrossRefGoogle Scholar
  2. 2.
    Cipriani G, Di Dio V, Genduso F, Cascia D, Liga R, Miceli R, Galluzzo GR (2014) Perspective on hydrogen energy carrier and its automotive applications. Int J Hydrog Energy 39:8482–8494CrossRefGoogle Scholar
  3. 3.
    Sharma S, Ghoshal SK (2015) Hydrogen the future transportation fuel: from production to applications. Renew Sustain Energy Rev 43:1151–1158CrossRefGoogle Scholar
  4. 4.
    Kandiel TA, Dillert R, Robben L, Bahnemann DW (2011) Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catal Today 161:196–201CrossRefGoogle Scholar
  5. 5.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefPubMedGoogle Scholar
  7. 7.
    Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRefGoogle Scholar
  8. 8.
    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425CrossRefGoogle Scholar
  9. 9.
    Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefPubMedGoogle Scholar
  10. 10.
    Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. J Photochem Photobiol C 24:64–82CrossRefGoogle Scholar
  11. 11.
    Lin HS, Chiou CH, Chang CK, Juang RS (2011) Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation. J Environ Manag 92:3098–3104CrossRefGoogle Scholar
  12. 12.
    Kun R, Mogyorósi K, Dékány I (2006) Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites. Appl Clay Sci 32:99–110CrossRefGoogle Scholar
  13. 13.
    Kőrösi L, Papp SZ, Ménesi J, Illés E, Zöllmer V, Richardt A, Dékány I (2008) Photocatalytic activity of silver-modified titanium dioxide at solid–liquid and solid–gas interfaces. Colloids Surf A 319:136–142CrossRefGoogle Scholar
  14. 14.
    Naldoni A, D’Arienzo M, Altomare M, Marelli M, Scotti R, Morazzoni F, Selli E, Dal Santo V (2013) Pt and Au/TiO2 photocatalysts for methanol reforming: role of metal nanoparticles in tuning charge trapping properties and photoefficiency. Appl Catal B 130–131:239–248CrossRefGoogle Scholar
  15. 15.
    Tálas E, Pászti Z, Korecz L, Domján A, Németh P, Szíjjártó GP, Mihály J, Tompos A (2018) PtOx-SnOx-TiO2 catalyst system for methanol photocatalytic reforming: influence of cocatalysts on the hydrogen production. Catal Today 306:71–80CrossRefGoogle Scholar
  16. 16.
    Al-Mazroai LS, Bowker M, Davies P, Dickinson A, Greaves J, James D, Millard L (2007) The photocatalytic reforming of methanol. Catal Today 122:46–50CrossRefGoogle Scholar
  17. 17.
    Cui W, Feng L, Xu C, Lü S, Qiu F (2004) Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film. Catal Commun 5:533–536CrossRefGoogle Scholar
  18. 18.
    Lin WC, Yang WD, Huang IL, Wu TS, Chung ZJ (2009) Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2−xNx catalyst. Energy Fuels 23:2192–2196CrossRefGoogle Scholar
  19. 19.
    Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  20. 20.
    Yang J, Wang D, Han H, Li C Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909Google Scholar
  21. 21.
    Gupta B, Melvin AA, Matthews T, Dash S, Tyagi AK (2016) TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renew Sustain Energy Rev 58:1366–1375CrossRefGoogle Scholar
  22. 22.
    Krissanasaeranee M, Wongkasemjit S, Cheetham AK, Eder D (2010) Complex carbon nanotube-inorganic hybrid materials as next-generation photocatalysts. Chem Phys Lett 496:133–138CrossRefGoogle Scholar
  23. 23.
    Cruz M, Gomez C, Duran-Valle CJ, Pastrana-Martínez LM, Faria JL, Silva AMT, Faraldos M, Bahamonde A (2017) Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2015.09.268 CrossRefGoogle Scholar
  24. 24.
    Chen D, Zou L, Li S, Zheng F (2016) Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction. Sci Rep. https://www.nature.com/articles/srep20335.pdf. Acessed 1 Feb 2016
  25. 25.
    Faraldos M, Bahamonde A (2017) Environmental applications of titania-graphene photocatalysts. Catal Today 285:13–28CrossRefGoogle Scholar
  26. 26.
    Park Y, Kang SH, Choi W (2011) Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion. Phys Chem Chem Phys 13:9425–9431CrossRefPubMedGoogle Scholar
  27. 27.
    Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259CrossRefGoogle Scholar
  28. 28.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRefGoogle Scholar
  29. 29.
    Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749CrossRefGoogle Scholar
  30. 30.
    You S, Luzan SM, Szabó T, Talyzin AV (2013) Effect of synthesis method on solvation and exfoliation of graphite oxide. Carbon 52:171–180CrossRefGoogle Scholar
  31. 31.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRefPubMedGoogle Scholar
  32. 32.
    Dimiev AM, Alemany LB, Tour JM (2013) Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7:576–588CrossRefPubMedGoogle Scholar
  33. 33.
    Szabó T, Tombácz E, Illés E, Dékány I (2006) Enhanced acidity and pH dependent surface charge characterisation of successively oxidized graphite oxides. Carbon 44:357–545CrossRefGoogle Scholar
  34. 34.
    Lerf A, He H, Foster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482CrossRefGoogle Scholar
  35. 35.
    Lerf A, Buchsteiner A, Pieper J, Schöttl S, Dekany I, Szabo T, Boehm HP (2006) Hydration behavior and dynamics of water molecules in graphite oxide. J Phys Chem Solids 67:1106–1110CrossRefGoogle Scholar
  36. 36.
    Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-Graphene composite as a high performance photocatalyst. ACS Nano 4:380–386CrossRefPubMedGoogle Scholar
  38. 38.
    Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan Z (2012) Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl Mater Interfaces 4:3944–3950CrossRefPubMedGoogle Scholar
  39. 39.
    Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705CrossRefGoogle Scholar
  40. 40.
    Zhang Q, He YQ, Chen XG, Hu DH, Li LJ, Yin T, Ji LL (2011) Structure and photocatalytic properties of TiO2-Graphene Oxide intercalated composite. Chin Sci Bull 56:331–339CrossRefGoogle Scholar
  41. 41.
    Ismail AA, Geioushy RA, Bouzid H, Al-Sayari SA, Al-Hajry A, Bahnemann DW (2013) TiO2 decoration of graphene layers for highly efficient photocatalyst: impact of calcination at different gas atmosphere on photocatalytic efficiency. Appl Catal B 129:62–70CrossRefGoogle Scholar
  42. 42.
    Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalyst for hydrogen evolution. J Phys Chem C 115:10694–10701CrossRefGoogle Scholar
  43. 43.
    Minella M, Sordello F, Minero C (2017) Photocatalytic process in TiO2/graphene hybrid materials. Evidence of charge separation by electron transfer from reduced graphene oxide to TiO2. Catal Today 281:29–37CrossRefGoogle Scholar
  44. 44.
    Al-Kandari H, Abdullah AM, Al-Kandari S, Mohamed AM (2015) Effect of the graphene oxide reduction method on the photocatalytic and electrocatalytic activities of reduced graphene oxide/TiO2 composite. RSC Adv 5:71988–71998CrossRefGoogle Scholar
  45. 45.
    Ding H, Zhang S, Chen JT, Hu XP, Du ZF, Qiu YX, Zhao DL (2015) Reduction of graphene oxide at room temperature with vitamin C for RGO–TiO2 photoanodes in dye-sensitized solar cell. Thin Solid Films 584:29–36CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Tang ZR, Fu X, Xu YT (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 4:7303–7314CrossRefPubMedGoogle Scholar
  47. 47.
    Zhuang W, He L, Zhu J, An R, Wu X, Mu L, Lu X, Lu L, Liu X, Ying H (2015) TiO2 nanofibers heterogeneously wrapped with reduced graphene oxide as efficient Pt electrocatalyst support for methanol oxidation. Int J Hydrog Energy 40:3679–3688CrossRefGoogle Scholar
  48. 48.
    Leong KH, Sim LC, Bahnemann D, Jang M, Ibrahim S, Saravanan P (2015) Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis. Appl Mater.  https://doi.org/10.1063/1.4926454 CrossRefGoogle Scholar
  49. 49.
    Zeng P, Zhang Q, Zhang X, Peng T (2012) Graphite oxide–TiO2 nanocomposite and its efficient visible-light-driven photocatalytic hydrogen production. J Alloys Compd 516:85–90CrossRefGoogle Scholar
  50. 50.
    Vasilaki E, Georgaki I, Vernardou D, Vamvakaki M, Katsarakis N (2015) Ag-loaded TiO2/reduced graphene oxide nanocomposites forenhanced visible-light photocatalytic activity. Appl Surf Sci 353:865–872CrossRefGoogle Scholar
  51. 51.
    Kamat PV (2010) Graphene-based nanoarchitectures anchoring semiconductorand metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527CrossRefGoogle Scholar
  52. 52.
    Szabó T, Veres Á, Cho E, Khim J, Varga N, Dékány I (2013) Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites. Colloids Surf A 433:230–239CrossRefGoogle Scholar
  53. 53.
    Preočanin T, Kallay N (2006) Point of zero charge and surface charge density of TiO2 in aqueous electrolyte solution as obtained by potentiometric mass titration. Croat Chem Acta 79:95–106Google Scholar
  54. 54.
    Vass Á, Pászti Z, Bálint SZ, Németh P, Szíjjártó GP, Tompos A, Tálas E (2016) Structural evolution in Pt/Ga-Zn-oxynitride catalysts for photocatalytic reforming of methanol. Mater Res Bull 83:65–76CrossRefGoogle Scholar
  55. 55.
    Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053CrossRefGoogle Scholar
  56. 56.
    Fung BM, Khitrin AK, Ermolaev KJ (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101CrossRefPubMedGoogle Scholar
  57. 57.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Eden PrairieGoogle Scholar
  58. 58.
    Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2003) NIST X-ray photoelectron spectroscopy database, version 3.4. National Institute of Standards and Technology, Gaithersburg, http://srdata.nist.gov/xps/
  59. 59.
    CasaXPS (2016) Processing software for XPS, AES, SIMS and more, Casa Software Ltd., Andover. http://www.casaxps.com,
  60. 60.
    Mohai M (2004) XPS MultiQuant: multimodel XPS quantification software. Surf Interface Anal 36:828–832CrossRefGoogle Scholar
  61. 61.
    El-Bery HM, Matsushita Y, Abdel-moneim A (2017) Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: comparison between RGO, Au and Pt reduction sites. Appl Surf Sci 423:185–196CrossRefGoogle Scholar
  62. 62.
    Jiang Y, Scott J, Amal R (2012) Exploring the relationship between surface structure and photocatalytic activity of flame-made TiO2-based catalysts. Appl Catal B 126:290–297CrossRefGoogle Scholar
  63. 63.
    Stobinski L, Lesiak B, Zemek J, Piricek K (2012) Time dependent thermal treatment of oxidized MWCNTs studied by the electron and mass spectroscopy methods. Appl Surf Sci 258:7912–7917CrossRefGoogle Scholar
  64. 64.
    Yamada Y, Yasuda H, Murota K, Nakamura M, Sodesawa T, Sato S (2013) Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48:8171–8198CrossRefGoogle Scholar
  65. 65.
    Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152CrossRefGoogle Scholar
  66. 66.
    Yang WD, Li YR, Lee YC (2016) Synthesis of r-GO/TiO2 composites via the UV-assisted photocatalytic reduction of graphene oxide. Appl Surf Sci 380:249–256CrossRefGoogle Scholar
  67. 67.
    Cao S, Liu T, Tsang Y, Chen C (2016) Role of hydroxylation modification on the structure and property ofreduced graphene oxide/TiO2 hybrids. Appl Surf Sci 382:225–238CrossRefGoogle Scholar
  68. 68.
    Emeline AV, Ryabchuk VK, Serpone N (2007) Photoreactions occurring on metal-oxide surfaces are not all photocatalytic. Description of criteria and conditions for processes to be photocatalytic. Catal Today 122:91–100CrossRefGoogle Scholar
  69. 69.
    Tan HL, Denny F, Hermawan M, Wong RJ, Amal R, Ng YH (2017) Reduced graphene oxide is not a universal promoter for photocatalytic activities of TiO2. J Materiomics 3:51–57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Katalin Majrik
    • 2
  • Árpád Turcsányi
    • 1
  • Zoltán Pászti
    • 2
  • Tamás Szabó
    • 1
  • Attila Domján
    • 3
  • Judith Mihály
    • 2
  • András Tompos
    • 2
  • Imre Dékány
    • 1
  • Emília Tálas
    • 2
  1. 1.Department of Physical Chemistry and Materials ScienceUniversity of SzegedSzegedHungary
  2. 2.Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  3. 3.NMR Research Group, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations